Example I:

$$
\begin{aligned}
& y \\
& \\
& \\
& \\
& y=2 m
\end{aligned}
$$

The ball is dropped from rest $\left(v_{I}=0\right)$ at a height of $y_{I}=2 m$. Its velocity just before hitting the ground \vec{v}_{2} is given by $v_{2}{ }^{2}-0^{2}=-2 g(0-2) \Longrightarrow \vec{v}_{2}=-\sqrt{2 \times 9.8 \times 2} \vec{j}=-6.3 \vec{j} \mathrm{~m} / \mathrm{s}$.
While the ball is colliding with the ground, two forces are acting on the ball, the weight $\vec{W}_{B E}$ and the normal by the ground $\vec{N}_{B G}$.

$\vec{F}_{\text {net }}$ is always along the y-direction and is $\left(N_{B G}-m g\right) \vec{j}$. If we apply the impulse momentum theorem between
$t_{i}=10 \mathrm{~ms}=$ instant just before the collision with the ground when
$\vec{v}=\vec{v}_{i}=-6.3 \vec{j}$
and
$t_{f}=20 \mathrm{~ms}=$ instant just after the collision with the ground when $\vec{v}=\vec{v}_{f}$
we get
$m\left(\vec{v}_{f}-\vec{v}_{i}\right)=\int_{t_{i}}^{t_{i}} \vec{F}_{\text {net }} d t$
or since all of the vectors have only y-components
$m\left(v_{f}-v_{i}\right)=\int_{t_{i}}^{t_{f}} F_{\text {net }} d t=\int_{t_{i}}^{t_{f}} N_{B G}-m g d t=\int_{t_{i}}^{t_{f}} N_{B G} d t-m g\left(t_{f}-t_{i}\right)$
The integral $\int_{t_{i}}^{t_{f}} N_{B G} d t$ is the area under the $N_{B G}(t)$ curve and is equal to $\frac{480(20-10) 10^{-3}}{2}=2.4 \mathrm{~N} . \mathrm{s}$
Also
$\mathrm{mg}\left(t_{f}-t_{i}\right)=0.2 \times 9.8(20-10) 10^{-3}=0.02 \mathrm{~N} . \mathrm{s}$
Notice that most of the impulse is due to the normal force.
The velocity just after the ball bounces off the ground is then
$v_{f}=v_{i}+\frac{\int_{t}^{t_{i}} N_{\mathrm{BG}} d t-m g\left(t_{f}-t_{i}\right)}{m}=-6.3+\frac{2.4-0.02}{0.2}=5.6 \mathrm{~m} / \mathrm{s}$
The ball reaches a height h such that

$$
0^{2}-v_{f}^{2}=-2 g h \Longrightarrow h=1.6 m
$$

