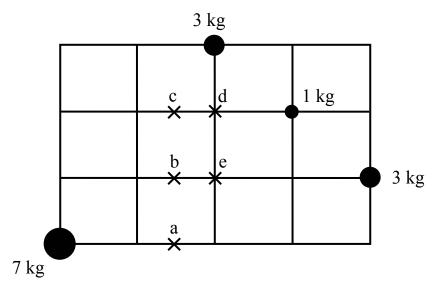
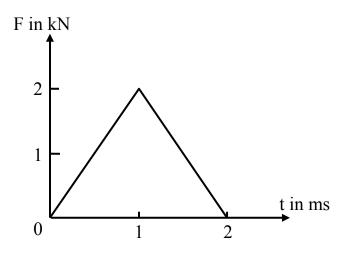
Name:		Total Points:
(Last)	(First)	

Physics 201


Exam 3

Write also your name in the appropriate box of the scantron

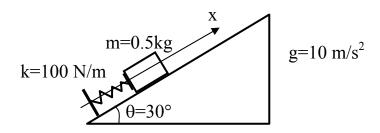
Multiple choice questions


Answer all of the following questions. Read each question carefully. **Fill the correct bubble on your scantron sheet**. Each question has exactly one correct answer. All questions are worth the same amount of points.

- 1. A point mass m has kinetic energy KE_1 measured in an inertial frame R_1 and kinetic energy KE_2 measured in another inertial frame R_2 . The velocity of R_2 with respect to R_1 is $\vec{v} \neq 0$. Which of the following is true for sure?
 - A. $KE_2=KE_1$
 - B. $KE_2=KE_1 + 1/2mv^2$
 - C. $KE_2 \le KE_1$
 - D. $KE_2 > KE_1$
 - E. $KE_2 \neq KE_1$
- 2. The center of mass of the system of particles shown in the diagram is at point

- A. a
- B. b
- C. c
- D. d
- E. e

3. Using a mallet, you strike a ball of mass 0.50 kg that is initially at rest. The force F on the ball as a function of time is plotted in the figure. At t=2.0ms, the speed of the ball is



- A. 10 m/s
- B. 8.0 m/s
- C. 6.0 m/s
- D. 4.0 m/s
- E. 2.0 m/s

Name:			Total Points:
	(Last)	(First)	

Questions 4 through 10 all refer to the same problem.

A block of mass m=0.5kg is initially at rest on a frictionless 30° incline as shown on the figure below. The block is resting against a massless spring of spring constant k=100N/m. The spring is not attached to the block. Displacements are measured along an x-axis directed up along the incline. Take the origin x=0 to be the location where the spring is not compressed. Since the spring is not attached to the block, the spring loses contact with the block for x>0. Take g=10 m/s².

- 4. What is the location x_{eq} of the block at equilibrium?
 - A. -2.5 cm
 - B. -4.33 cm
 - C. -5 cm
 - D. -7 cm
 - E. -10 cm

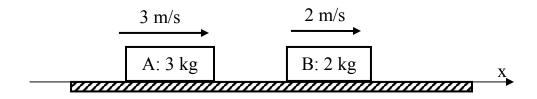
The block is displaced by an additional 4 cm down the incline from its equilibrium position and then released (in other words, the block is released at $x=x_{eq}$ -4cm with no initial velocity).

In what follows, U(x) is the potential energy of the system block block+spring+Earth at position x along the incline.

Name:			Total Points:	
	(Last)	(First)	_	

- 5. How do $U(x_{eq}$ -4cm) and $U(x_{eq})$ compare?
 - A. $U(x_{eq}-4cm) > U(x_{eq})$
 - B. $U(x_{eq}-4cm) \le U(x_{eq})$
 - C. $U(x_{eq}-4cm) = U(x_{eq})$
 - **D.** Can't tell. There is not enough information.
- 6. After its release, as the block travels up the incline, what can you say about the total mechanical energy E_{mec} of the system block+spring+Earth?
 - A. E_{mec} is constant.
 - B. E_{mec} decreases as x increases.
 - C. E_{mec} increases as x increases.
 - **D.** From $x=x_{eq}-4$ cm to x=0 cm, E_{mec} increases. Then E_{mec} decreases as x increases.
 - E. From $x = x_{eq}$ -4 cm to x = 0 cm, E_{mec} decreases. Then E_{mec} increases as x increases.
- 7. After its release, what is the position x_{max} of the block up the incline when it comes momentarily to rest for the first time?
 - A. -1.5 cm
 - B. 1.5 cm
 - C. 1.95 cm
 - D. 4 cm
 - E. 10 cm
- 8. How do $U(x_{eq}$ -4cm) and $U(x_{max})$ compare?
 - A. $U(x_{eq}-4cm) > U(x_{max})$
 - B. $U(x_{eq}-4cm) \le U(x_{max})$
 - C. $U(x_{eq}-4cm) = U(x_{max})$
 - **D.** Can't tell. There is not enough information.

Name:			Total Points:
	(Last)	(First)	


- 9. As the block travels up the incline, where is its kinetic energy maximum?
 - A. at x_{max}
 - B. at x_{eq}
 - C. at the origin x=0
 - D. at some location between x=0 and x_{max}
 - E. at some location between x_{eq} -4cm and x_{eq}
- 10. As the block travels up the incline, where is the magnitude of its acceleration maximum?
 - A. at x_{max}
 - B. at x_{eq}
 - C. at the origin x=0
 - D. at x_{eq} -4cm
 - E. at some location between x_{eq} -4cm and x_{eq}

Name:			Total Points:
	(Last)	(First)	

Questions 11 through 17 all refer to the same problem.

On a frictionless horizontal track, block A of mass 3kg collides with block B of mass 2 kg. Before the collision, the velocity of A is $\vec{v}_A = 3\hat{x}m/s$ and the velocity of B is $\vec{v}_B = 2\hat{x}m/s$ as indicated on the figure below.

After the collision, it is observed that A and B have the same velocity \vec{v} .

- 11. During the collision, what is the direction of the net force on A?
 - A. \hat{x}
 - B. $-\hat{x}$
 - C. Undefined, since the net force is 0
- 12. During the collision, what can you say about the magnitude $|\vec{p}_A|$ of the momentum of A?
 - A. $|\vec{p}_A|$ increases
 - B. $|\vec{p}_A|$ decreases
 - C. $|\vec{p}_A|$ stays the same
 - D. Can't say anything. There is not enough information.

Name:		Total Points:
(Last)	(First)	
	the velocity of the center of mass of the systemion (in m/s)?	em A+B before
A. 0		
B. $2\hat{x}$		
C. 2.5	\hat{x}	
D. 2.6	\hat{x}	
E. $5\hat{x}$		
14. What is	the velocity \vec{v} of A and B after the collision	(in m/s)?
A. 0		
B. $2\hat{x}$		
C. 2.5	Ŷ	
D. 2.6		
E. $5\hat{x}$		
	nter of mass frame, what is the kinetic energe collision (in Joules)?	gy of the system
A. 0		
B. 0.6		
C. 1.2		
D. 17.5		
E. 35		
	nter of mass frame, what is the kinetic energ collision (in Joules)?	y of the system
A. 0		
B. 0.6		
C. 1.2 D. 17.5	•	
D. 17.5 E. 35	1	

Name:			Total Points:
_	(Last)	(First)	

17. Is the collision an elastic collision?

- **A.** No in all inertial frames.
- **B.** Yes in all inertial frames.
- C. Yes in the center of mass frame. No in an inertial frame fixed with respect to the horizontal track.
- **D.** No in the center of mass frame. Yes in an inertial frame fixed with respect to the horizontal track.
- E. Can't tell. There is not enough information. N