\qquad
\qquad

Physics 201

Exam 2

> Write also your name in the appropriate box of the scantron
\qquad
\qquad

Multiple choice questions [60 points]

Answer all of the following questions. Read each question carefully. Fill the correct bubble on your scantron sheet. Each correct answer is worth 4 points. Each question has exactly one correct answer.

1. You take the elevator from the first to the fourth floor. The normal force acting on you by the elevator does zero work.
A. True
B. False $\left(\mathrm{W}=\mathrm{Nd}\right.$ and d is the distance between the $1^{\text {st }}$ and $4^{\text {th }}$ floors)
2. You are standing on your skateboard. Your friend gives a gentle push to the skateboard. The friction force acting on you by the skateboard does
A. negative work
B. zero work

C positive work (The net force acting on you is the friction force. Your kinetic energy increases. The friction force does positive work).
3. You place a ruler on a sheet of paper on a horizontal table. You pull the sheet fast and hard enough so that the ruler slides on the paper. The friction force acting on the ruler by the paper does
A. negative work
B. zero work

C positive work (same as above except for the type of friction which is kinetic in this case)
4. Normal forces are always directed vertically upward.
A. True
B. False (Hold a book with your hand against a wall. The normal force exerted by the wall on the book is horizontal)
5. Gravity is a conservative force
A. True (Check your class notes. The work of the weight of an object is path independent).
B. False
\qquad
\qquad
(Last)

```
(First)
```

6. Kinetic friction is a conservative force
A. True
B. False (The longer the path, the more work is done by kinetic friction. The work done by kinetic friction is not path independent).
7. When a particle moves on a circle, the acceleration of the particle is always directed toward the center of the circle
A. True
B. False (The acceleration is directed toward the center only if the particle moves a constant speed).
8.

Which of the following free-body diagrams represents the car going uphill at a constant speed?

(1)

(2)

(3)

(4)
A. (1)
B. (2)
C. (3) (all the other FBD give a non zero net force)
D. (4)
\qquad
\qquad -
9. Two masses m_{1} and m_{2}, connected by a massless string, are accelerating uniformly on a frictionless surface as shown. What is the ratio of the tensions $\mathrm{T}_{1} / \mathrm{T}_{2}$?

A. $\mathrm{m}_{1} / \mathrm{m}_{2}$
B. $\mathrm{m}_{2} / \mathrm{m}_{1}$
C. $\left(m_{1}+m_{2}\right) / m_{1}$
D. $m_{1} /\left(m_{1}+m_{2}\right)$

Mass $m_{1}: \mathrm{T}_{1}=\mathrm{m}_{1} \mathrm{a}$
Mass $m_{1}+\mathrm{m}_{2}: \mathrm{T}_{2}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{a}$
E. $m_{2} /\left(m_{1}+m_{2}\right)$
\qquad
\qquad
(Last)
(First)

Questions 10 through 15 all refer to the same problem.
Blocks P and Q are connected by a massless, inextensible string that runs over a frictionless peg. The masses of block P and Q are M_{P} and $\mathrm{M}_{\mathrm{Q}} . \mathrm{M}_{\mathrm{P}}$ is less than M_{Q}.

10 The magnitude of the net force on block P is
A. less than $\mathrm{M}_{\underline{p}} \underline{g}$
B. equal to $\mathrm{M}_{\mathrm{P}} \mathrm{g}$
C. greater than M_{P} but less than $\mathrm{M}_{\mathrm{Q}} \mathrm{g}$
D. equal to $\mathrm{M}_{\mathrm{Q}} \mathrm{g}$

E. greater than $\mathrm{M}_{\mathrm{Q}} \mathrm{g}$
$\left|\vec{a}_{P}\right|=\left|\vec{a}_{Q}\right|$ since P and Q are connected by an inextensible string. Since $\mathrm{M}_{\mathrm{P}}<\mathrm{M}_{\mathrm{Q}}, \vec{a}_{P}$ is directed up, \vec{a}_{Q} is directed down. Q doesn't fall as fast as it would in a free fall. Thus, its acceleration is less than g. The magnitude of the net force acting on P is thus
$M_{P}\left|\vec{a}_{p}\right|<M_{P} g \mathrm{M}$

At time t_{1}, block P is moving down with speed $v_{1}=4 \mathrm{~cm} / \mathrm{s}$. At time $\mathrm{t}_{2}>\mathrm{t}_{1}$, it has speed $\mathrm{v}_{2}=2 \mathrm{~cm} / \mathrm{s}$ directed down. Between t_{1} and t_{2}, block P moves 10 cm down. Questions 11 through 15 refer to this time interval.

11 The sign of the net work done on block P is
A. positive
B. negative (since the change of kinetic energy of P is negative)
C. zero

12 The sign of the work done on block P by the string is
A. positive
B. negative (the tension is up, the displacement is down)
C. zero

13 Compare the absolute value of the work done on block P by the string $\left(\left|\mathrm{W}_{\mathrm{PS}}\right|\right)$ to the absolute value of the work done on block P by the Earth (| $\left.\mathrm{W}_{\mathrm{PE}} \mid\right)$
A. W_{PS} is greater than $\mid \mathrm{W}_{\mathrm{PE}}\left(\mathrm{W}_{\mathrm{net}}=\mathrm{W}_{\mathrm{PE}}+\mathrm{W}_{\mathrm{PS}}<0\right.$ (from 11), $\mathrm{W}_{\mathrm{PS}}<0$ (from 12), and since the weight and the displacement are both down, $W_{P E}>0$)
B. $\left|\mathrm{W}_{\mathrm{PS}}\right|$ is less than $\left|\mathrm{W}_{\mathrm{PE}}\right|$
\qquad
\qquad
(Last) (First)
C. $\left|W_{P S}\right|$ is equal to $\left|W_{P E}\right|$

14 The sign of the work done on block Q by the string $\left(\mathrm{W}_{\mathrm{QS}}\right)$ is
A. positive (tension is up, displacement is up)
B. negative
C. zero

15 Compare the absolute value of the work done on block P by the string $\left(\left|\mathrm{W}_{\mathrm{PS}}\right|\right)$ to the absolute value of the work done on block Q by the string $\left(\left|\mathrm{W}_{\mathrm{QS}}\right|\right)$.
A. $\left|\mathrm{W}_{\mathrm{PS}}\right|$ is greater than $\left|\mathrm{W}_{\mathrm{QS}}\right|$
B. $\left|\mathrm{W}_{\mathrm{PS}}\right|$ is less than $\left|\mathrm{W}_{\mathrm{QS}}\right|$
C. $\left|\mathrm{W}_{\mathrm{PS}}\right|$ is equal to $\left|\mathrm{W}_{\mathrm{OS}}\right|$ (same magnitude for the forces acting on P and Q by the string, same magnitude for the displacement of P and Q)
\qquad
\qquad

PROBLEM [40 points]

A string pulls on block P , which is on top of block Q . Block Q has mass m_{Q} and block P has mass m_{P}. The coefficients of friction between P and Q are μ_{s} (static) and μ_{k} (kinetic). The acceleration of gravity is g . Neglect friction between block Q and the table.

For questions 1-4 assume that block P does not slip on block \mathbf{Q}.
1). [3 pts] In the spaces provided, indicate the directions of the velocities, accelerations, and net forces of each block. If any of these is zero, state so explicitly. (The velocity of P is given.)

2). [10 pts] Draw free-body diagrams for blocks P and Q. Label each arrow to indicate: the type of force, the object the force is exerted on, and the object the force is exerted by.

Block Q

3). [8 pts] Write an expression for the maximum acceleration of block P if it does not slip on block Q . Your expression should only use quantities taken from this list: $m_{P}, m_{Q}, g, \mu_{\mathrm{s}}$ and μ_{k}

For $\mathrm{Q}: \mathrm{f}_{\mathrm{QP}}=\mathrm{m}_{\mathrm{Q}} \mathrm{a}_{\mathrm{Q}}$
P and Q have the same acceleration: $\mathrm{a}_{\mathrm{P}}=\mathrm{a}_{\mathrm{Q}}$. It is maximum when f_{QP} is maximum, i.e. $\mathrm{f}_{\mathrm{QP}}=\mathrm{f}_{\mathrm{PQ}}=\mu_{\mathrm{S}} \mathrm{N}_{\mathrm{PQ}}=\mu_{\mathrm{s}} \mathrm{m}_{\mathrm{P}}$

Thus, $\mathrm{a}_{\mathrm{P}}=\mathrm{a}_{\mathrm{Q}}=\mu_{\mathrm{s}} \mathrm{m}_{\mathrm{P}} \mathrm{g} / \mathrm{m}_{\mathrm{Q}}$
\qquad
\qquad
4). [8 pts] Write an expression for the maximum tension in the string if block P does not slip on block Q . Your expression should only use quantities taken from this list: $\mathrm{m}_{\mathrm{P}}, \mathrm{m}_{\mathrm{Q}}, \mathrm{g}, \mu_{\mathrm{s}}$ and μ_{k}

From the FBD for P :
$\mathrm{T}_{\mathrm{PS}}=\mathrm{f}_{\mathrm{PQ}}+\mathrm{m}_{\mathrm{Pa}}$
$T_{P S}=\left(\frac{m_{P}^{2}}{m_{Q}}+m_{P}\right) \mu_{s} g$

For questions 5 and 6, assume that the force exerted by the string, $T_{P S}$, is sufficiently large that block P begins to slip on block \mathbf{Q}.
5). [3 pts] Indicate the directions of the velocities, accelerations, and net forces of each block a short time after block P starts to slip. If any of these is zero, state so explicitly. (The velocity of P is given.)

6). [8 pts] Write an expression for the acceleration of block P. Your expression should only use quantities taken from this list: $\mathrm{T}_{\mathrm{PS}}, \mathrm{m}_{\mathrm{P}}, \mathrm{m}_{\mathrm{Q}}, \mathrm{g}, \mu_{\mathrm{s}}$ and μ_{k}

Using a FBD for P :
$\mathrm{T}_{\mathrm{PS}}=\mathrm{f}_{\mathrm{PQ}}+\mathrm{m}_{\mathrm{Pa}}$
f_{PO} is a kinetic friction force.
$a_{P}=\frac{T_{P S}}{m_{P}}-\mu_{k} g$

