Name:		Total Points:
(Last)	(First)	

Physics 201

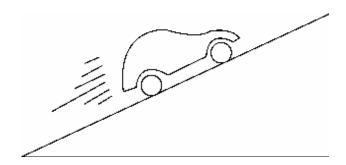
Exam 2

Write also your name in the appropriate box of the scantron

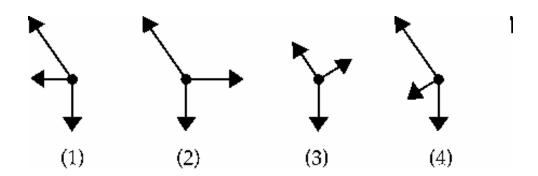
Name:			Total Points:	
-	(Last)	(First)		

Multiple choice questions [60 points]

Answer all of the following questions. Read each question carefully. **Fill the correct bubble on your scantron sheet**. Each correct answer is worth 4 points. Each question has exactly one correct answer.


- 1. You take the elevator from the first to the fourth floor. The normal force acting on you by the elevator does zero work.
 - A. True
 - B. False
- 2. You are standing on your skateboard. Your friend gives a gentle push to the skateboard. The friction force acting on you by the skateboard does
 - A. negative work
 - B. zero work
 - C positive work
- 3. You place a ruler on a sheet of paper on a horizontal table. You pull the sheet fast and hard enough so that the ruler slides on the paper. The friction force acting on the ruler by the paper does
 - A. negative work
 - B. zero work
 - C positive work
- 4. Normal forces are always directed vertically upward.
 - A. True
 - B. False
- 5. Gravity is a conservative force
 - A. True
 - B. False
- 6. Kinetic friction is a conservative force
 - A. True
 - B. False

7. When a particle moves on a circle, the acceleration of the particle is always directed toward the center of the circle

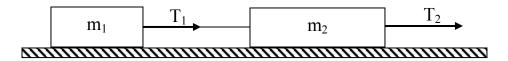

A. True

B. False

8.

Which of the following free-body diagrams represents the car going uphill at a constant speed?

A. (1)

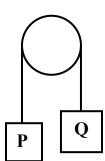

B. (2)

C. (3)

D. (4)

Name:			Total Points:
	(Last)	(First)	

9. Two masses m_1 and m_2 , connected by a massless string, are accelerating uniformly on a frictionless surface as shown. What is the ratio of the tensions T_1/T_2 ?


- A. m_1/m_2
- B. m_2/m_1
- C. $(m_1 + m_2)/m_1$
- D. $m_1/(m_1 + m_2)$
- E. $m_2/(m_1 + m_2)$

Name:			Total Points:
	(Last)	(First)	

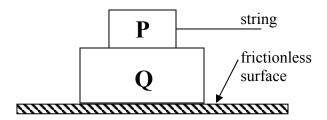
Questions 10 through 15 all refer to the same problem.

Blocks P and Q are connected by a massless, inextensible string that runs over a frictionless peg. The masses of block P and Q are M_P and M_O . M_P is less than M_O .

- 10 The magnitude of the net force on block P is
 - **A.** less than M_Pg
 - **B.** equal to M_Pg
 - C. greater than M_Pg but less than M_Qg
 - **D.** equal to M_Qg
 - **E.** greater than M_Qg

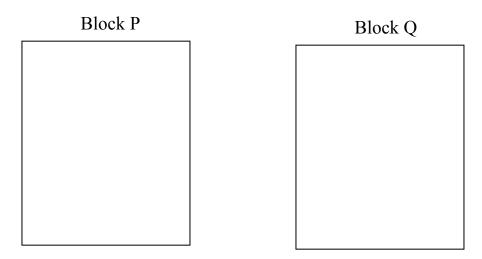
At time t_1 , block P is moving down with speed v_1 =4cm/s. At time t_2 > t_1 , it has speed v_2 =2cm/s directed down. Between t_1 and t_2 , block P moves 10 cm down. Questions 11 through 15 refer to this time interval.

- 11 The sign of the net work done on block P is
 - A. positive
 - **B.** negative
 - C. zero
- 12 The sign of the work done on block P by the string is
 - A. positive
 - **B.** negative
 - C. zero
- 13 Compare the absolute value of the work done on block P by the string ($|W_{PS}|$) to the absolute value of the work done on block P by the Earth ($|W_{PE}|$)
 - **A.** $|W_{PS}|$ is greater than $|W_{PE}|$
 - **B.** $|W_{PS}|$ is less than $|W_{PE}|$
 - C. $|W_{PS}|$ is equal to $|W_{PE}|$


Name:			Total Points:
	(Last)	(First)	

- 14 The sign of the work done on block Q by the string (W_{QS}) is
 - A. positive
 - **B.** negative
 - C. zero
- 15 Compare the absolute value of the work done on block P by the string ($|W_{PS}|$) to the absolute value of the work done on block Q by the string ($|W_{QS}|$).
 - A. $|W_{PS}|$ is greater than $|W_{QS}|$
 - **B.** $|W_{PS}|$ is less than $|W_{QS}|$
 - C. $|W_{PS}|$ is equal to $|W_{QS}|$

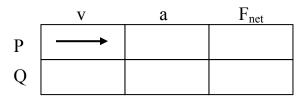
Name:			Total Points:	
	(Last)	(First)	_	


PROBLEM [40 points]

A string pulls on block P, which is on top of block Q. Block Q has mass m_Q and block P has mass m_P . The coefficients of friction between P and Q are $\mu_s(\text{static})$ and $\mu_k(\text{kinetic})$. The acceleration of gravity is g. Neglect friction between block Q and the table.

For questions 1-4 assume that block P does not slip on block Q.

- 1). [3 pts] In the spaces provided, indicate the directions of the velocities, accelerations, and net forces of each block. If any of these is zero, state so explicitly. (The velocity of P is given.)
- [10 pts] Draw free-body diagrams for blocks P and Q. Label each arrow to indicate: the type of force, the object the force is exerted on, and the object the force is exerted by.


3). [8 pts] Write an expression for the maximum acceleration of block P if it does not slip on block Q. Your expression should only use quantities taken from this list: m_P , m_Q , g, μ_s and μ_k

Name:			Total Points:	
_	(Last)	(First)		

4). [8 pts] Write an expression for the maximum tension in the string if block P does not slip on block Q. Your expression should only use quantities taken from this list: m_P , m_Q , g, μ_s and μ_k

For questions 5 and 6, assume that the force exerted by the string, T_{PS} , is sufficiently large that block P begins to slip on block Q.

5). [3 pts] Indicate the directions of the velocities, accelerations, and net forces of each block a short time after block P starts to slip. If any of these is zero, state so explicitly. (The velocity of P is given.)

6). [8 pts] Write an expression for the acceleration of block P. Your expression should only use quantities taken from this list: T_{PS} , m_P , m_Q , g, μ_s and μ_k