Example 1 :

A $20-\mathrm{cm}$-tall spring with spring constant $5000 \mathrm{~N} / \mathrm{m}$ is placed vertically on the ground. A 10.2 kg block is held 15 cm above the spring. The block is dropped, hits the spring, and compresses $i t$. What is the height of the spring at the point of maximum compression?

Example 2:

Consider the potential energy graph shown below

1) For a particle of total energy 1.5 J , answer the following questions:

- Where does the particle speed up?
- Where does the particle slow down?
- Where are the turning points in the motion?
- What is the kinetic energy graph?
- What is the graph of the force acting on the particle?

2) Where could be a particle at rest be located? Is the equilibrium stable or unstable?
3) A particle with total energy $E=1.5 \mathrm{~J}$ is moving to the left. Just as it passes $\mathrm{x}=2 \mathrm{~m}$, it is hit from behind by a marble that has been launched from a slingshot. The collision increases the particle's energy by 1.0 J . Describe the subsequent motion of the particle.

Abstract

Answers Example 1: $\mathrm{H}=10 \mathrm{~cm}$ Example 2: Draw the horizontal line at 1.5 J . The difference $1.5-\mathrm{U}=\mathrm{K}$ is the kinetic energy. Where K increases the particle speeds up (e.g. moving right from 2 m to 3 m). Where K decreases the particle slows down (e.g. moving left from 3 m to 2 m). The turning points are the points where $\mathrm{U}=1.5 \mathrm{~J}$ (approximately at 0.5 m and 3.5 m). The kinetic energy graph is defined between 0.5 m and 3.5 m . It is given by $1.5-\mathrm{U}$. The force at any location is given by $-\mathrm{dU} / \mathrm{dx}$ (= negative slope of the graph).

A particle is at rest if $\mathrm{dU} / \mathrm{dx}=0$ (force is 0) and $\mathrm{K}=0$. A particle with total 0 J energy can be located at 1 m and 3 m . The equilibrium is stable at these locations (minimum of $\mathrm{U})$. A particle with total 1 J energy can be at rest at 2 m . But the equilibrium is unstable at that location (maximum of U). A particle with total energy 2 J could be at rest anywhere beyond 4 m . The equilibrium would be unstable anywhere beyond 4 m .

