(First)

Physics 201

Exam 1

Write also your name in the appropriate box of the scantron

(First)

Multiple choice questions

Answer all of the following questions. Read each question carefully. **Fill the correct bubble on your scantron sheet**. Each question has exactly one correct answer. All questions are worth the same amount of points.

- 1. A plane goes 300 km from A to B in a straight line, immediately turns around, and returns to B. The time for this round trip is 2 hour. The magnitude of the average velocity of the plane for this round trip is
 - A. 0 km/h
 - B. 100 km/h
 - C. 150 km/h
 - D. 200 km/h
 - E. Cannot be calculated without knowing the acceleration
- 2. A car, initially at rest, travels 20m in 4s along a straight line with constant acceleration. The acceleration of the car (in m/s^2) is
 - A. 0.4
 - B. 1.3
 - C. 2.5
 - D. 4.9E. 9.8
- 3. At a stoplight, a truck traveling at 15m/s passes a car as it starts from rest. The truck travels at constant velocity and the car accelerates at $3m/s^2$. How many seconds will it take for the car to catch up to the truck?
 - A. 5
 B. 10
 C. 15
 D. 20
 - D. 20E. 25

4. An elevator is moving upward with constant acceleration. The dashed curve shows the position y of the ceiling of the elevator as a function of the time t. At the instant indicated by the dot, a bolt breaks loose and drops from the ceiling. Which curve best represents the position of the bolt as a function of time?

5. On a circular track, a car starts from rest at point A and moves in a clockwise direction with increasing speed. What is the direction of the acceleration vector at A?

A. Undefined: the acceleration is zero

B.

- 6. Referring to the car of the previous question, what would be a valid direction of the acceleration at point B?
 - A. Undefined: the acceleration is zero
 B.
 C.
 D.
 E.

7. Four vectors $\vec{A}, \vec{B}, \vec{C}, \vec{D}$ all have the same magnitude. The angle θ between adjacent vectors is 45° as shown. The correct vector equation is

A. $\vec{A} - \vec{B} - \vec{C} + \vec{D} = 0$ B. $\vec{B} - \sqrt{2}\vec{C} + \vec{D} = 0$ C. $\vec{A} + \vec{B} = \vec{B} + \vec{D}$ D. $\vec{A} + \vec{B} + \vec{C} + \vec{D} = 0$ E. $\vec{A} + \sqrt{2}\vec{B} + \vec{C} = 0$

8.

In the diagram, \vec{A} has magnitude 12 m and \vec{B} has magnitude 8 m. The x component of $\vec{A} + \vec{B}$ is about

A. 4.5 m
B. 8.5 m
C. 12.5 m
D. 14.5 m
E. 20 m

Name: _____(Last)

(First)

9. Two objects, A and B, move with constant speed relative to a straight line. The strobe diagram shows the positions of the objects at instant 1-3, separated by one-second time intervals. (Note that each tick mark on the diagram represents 5 meters.)

At instant 2 what is the direction of the instantaneous velocity of object B in the frame of reference of object A?

- A. to the left
- **B.** to the right
- C. Undefined: the velocity is zero
- **10.** Still referring to the problem of the previous question, at instant 2, what is the magnitude of the instantaneous velocity of object B in the frame of reference of object A?
 - A. 0 m/s
 - **B.** 10 m/s
 - **C.** 20 m/s
 - **D.** 30 m/s
 - **E.** 50 m/s

Questions 11 through 18 all refer to the same problem.

A baseball is thrown from the top of a cliff as shown below. The cliff height is marked in each case. Answer the following questions, referring to these cases. Take $g=10 \text{ m/s}^2$.

- **11.** In which case will the baseball remain in the air the longest amount of time?
- **12.** In which case will the baseball remain in the air the shortest amount of time?

Name:	
-------	--

(Last)

(First)

- 13. In which case will the baseball go the farthest in the x direction?
- **14.** Consider cases B and E only

In which case will the baseball remain in the air the longest amount of time?

- A. case B
- **B.** case E
- C. Same amount of time for both
- **15.** If you wanted to make the ball go farther in the x direction, in case B, you could
 - A. increase the magnitude of the initial velocity
 - **B.** change the angle between the initial velocity and the x direction to +4 (i.e. the initial velocity is directed upward at a 45° angle).
 - C. move to a higher cliff
 - **D.** A and B
 - E. A, B and C

All questions 16 through 18 refers to case D (take $g=10m/s^2$)

- 16. Determine how many seconds it takes for the baseball to hit the ground
 - A. 1.9
 B. 2.7
 C. 3.2
 D. 3.8
 E. 4.8
- 17. What is the magnitude of the velocity when the ball hits the ground?
 - **A.** 0 m/s
 - **B.** 5 m/s
 - **C.** 10.7 m/s
 - **D.** 15.8 m/s
 - **E.** 22.4 m/s

	Total	Points:	
-		- 0111001	

Name:	
-------	--

(Last)

- **18.** What is the direction of the acceleration when the baseball is at its highest point?
 - A. Undefined: the acceleration is zero.

(First)

- **B.** X
- **C.** –**X**
- **D.** y
- **E.** _y