
1

CSC 143

Overriding methods from the
Object class: equals, toString

2

Object class

 The ultimate superclass
 Any object is an Object

MyClass c = new MyClass();

System.out.print(c instanceof Object);
// always prints true

 All methods from Object are inherited by any
other class
 Should they be overridden?
 Take a look at toString and equals.

3

public String toString() (1)
public class Car {

private String make;
private double weight;
public Car(String theMake, double theWeight) {

make = theMake;
weight = theWeight;

}
}

 Car c = new Car(“Ford”, 2000);
System.out.println(c.toString());
// prints Car@82ba41
// name of the class + some hash code

 Override toString in Car to make it more
meaningful

4

public String toString() (2)
public class Car {

private String make;
private double weight;
public Car(String theMake, double theWeight) {

make = theMake;
weight = theWeight;

}
public String toString() {

return “make = “ + make + “, weight = “ + weight;
}

}
 Car c = new Car(“Ford”, 2000);

System.out.println(c);
// which is equivalent to
System.out.println(c.toString());
// prints make = Ford, weight = 2000.0

 Always override toString()

5

public boolean equals(Object o)

 Implemented in Object as
public boolean equals(Object o) {

return this == o;
}

 OK?
Car c1 = new Car(“Ford”, 2000);
Car c2 = new Car(“Ford”, 2000);
System.out.println(c1.equals(c2)); // prints false

 Fix: override equals within Car

6

equals (2)
public class Car {

// previous code omitted
public boolean equals(Object o) {

if (o instanceof Car) {
Car c = (Car) o;
return (this.weight == c.weight &&

this.make.equals(c.make));
}
else {

return false;
}

}
}

 o must be a Car: check with instanceof

 Use equals to compare fields that have a
reference type (such as String).

7

Does it work?
 Car c1 = new Car(“Ford”, 2000);

Car c2 = new Car(“Ford”, 2000);
System.out.println(c1.equals(c2));
// prints true.

 But wait!

 What if Car is inherited?

8

equals and inheritance
public class FancyCar extends Car{

private double topSpeed;
public FancyCar(String theMake,

double theWeight, double theTopSpeed){
super(theMake, theWeight);
topSpeed = theTopSpeed;

}
public boolean equals(Object o) {

if (o instanceof FancyCar) {
FancyCar fc = (FancyCar) o;
return (super.equals(o) && this.topSpeed == o.topSpeed);

}
else {

return false;
}

}
}

 Car c = new Car(“Ford”, 2000);
FancyCar fc = new FancyCar(“Ford”, 2000, 200);
System.out.print(c.equals(fc)); // prints true
System.out.print(fc.equals(c)); // prints false

9

What is going on?

A FancyCar is a Car
fc instanceof Car is true

A Car is not a FancyCar
c instanceof FancyCar is false

One requirement of equals is that
if x.equals(y) is true, then y.equals(x) is also true.

instanceof checks an is_a relationship

A necessary condition for two variables to be equal is that
they have the same dynamic type.

Get the dynamic type with getClass(). Don’t use instanceof.

10

A better equal
 In Car

public boolean equals(Object o) {
if (o != null && o.getClass() == this.getClass()) {

Car c = (Car) o;
return (this.weight == c.weight &&

this.make.equals(c.make));
}
else {return false;}

}

 In FancyCar
public boolean equals(Object o) {

if (o != null && o.getClass() == this.getClass()) {
FancyCar fc = (FancyCar) o;
return (super.equals(o) && topSpeed==fc.topSpeed);

}
else {return false;}

}

11

One last word

 Check the class website for the complete code of the
previous examples

 If equals is overridden, override hashcode as well. See
later when talking about hash maps…

