
06-1

1

CSC 143

• Introduction to Graphical Interfaces in Java:

• AWT and Swing

2

Graphical User Interfaces
• GUIs are a hallmark of modern software

• Hardly existed until Mac's came along
• Picked up by PC's and Unix later

• User sees and interacts with “controls” or “components”
• menus

• scrollbars

• text boxes

• check boxes

• buttons

• radio button groups

• graphics panels

• etc. etc.

3

Opposing Styles of Interaction
• “Algorithm-Driven”

• When program needs
information from user, it
asks for it

• Program is in control
• Typical in non-GUI

environments

• “Event Driven”
• When user wants to do something, he/she

signals to the program
Moves or clicks mouse, types, etc.

• These signals come to the program as
“events”

• Program is interrupted to deal with the
events

• User has more control

• Typical in GUI environments

4

A Bit of Java History
• Java 1.0: AWT (Abstract Windowing Toolkit)
• Java 1.1: AWT with new event handling model
• Java 1.2 (aka Java 2): Swing

• Greatly enhanced user interface toolkit built on top of AWT
• Same basic event handling model as in Java 1.1 AWT
• developed originally on top of Java 1.1, standard in Java 1.2

• Java 1.3 – 1.8
• Incremental changes; no major revolution

• Naming
• Most Swing components start with J.
• No such standard for AWT components

• Other Java Library : Javafx

06-2

5

Bit o' Advice

1. Use Swing whenever you can

2. Use AWT whenever you have to

Starting a Swing application

6

7

Components & Containers
• Every GUI-related component

descends from Component,
which contains dozens of basic
methods and fields common to
all AWT/Swing component

• "Atomic" components: labels,
text fields, buttons, check boxes,
icons, menu items, …

• Some components are
Containers – components like
panels that can contain other
subcomponents

Component

Container Lots
of AW componjents

JComponent various AWT containers

JPanel JFileChooser tons
of J components

8

Types of Containers

• Top-level containers: JFrame,JDialog, JApplet
• Often correspond to OS Windows

• Mid-level containers: panels, scroll panes, tool bars, …
• can contain certain other components

• JPanel is best for general use

• An Applet is a special kind of container

• Specialized containers: menus, list boxes, combo boxes...

• Technically, all J components are containers

06-3

9

JFrame – A Top-Level Window
• Top-level application window

JFrame win = new JFrame(“Optional Window Title”);

• Some common methods
setSize(int width, int height); // frame width and height

setBackground(Color c); // background color
show(); //make visible (for the first time)

repaint(); // request repaint after content change

setPreferredSize(Dimension d);// default size for window; also can set min

// and max sizes

dispose(); // get rid of the window when done

• Look at project GUIs to see some of these at work

10

JPanel – A General Purpose Container

• Commonly added to a window to provide a space for
graphics, or collections of buttons, labels, etc.

• JPanels can be nested to any depth

• Many methods in common with JFrame (since both are
ultimately instances of Component)

setSize(int width, int height);

setBackground(Color c);
setPreferredSize(Dimension d);

• Bit o' advice: Can't find the method you're looking for?
Check the superclass.

11

Adding Components to Containers

• Swing containers have a “content pane” that manages the
components in that container

[Differs from original AWT containers, which managed their components directly]

• To add a component to a container, use its add method
JFrame jf = new JFrame();
JPanel panel = new JPanel();

jf.add(panel);

12

Non-Component Classes
• Not all classes are GUI components
• AWT

• Color, Dimension, Font, layout managers
• Shape and subclasses like Rectangle, Point, etc.
• Graphics

• Swing
• Borders
• Further geometric classes
• Graphics2D

• Other (in java.awt.Image, javax.swing.Icon, etc…)
• Images, Icons

06-4

13

Layout Managers

• What happens if we add several components to a container?
• What are their relative positions?

• Answer: each container has a layout manager
• Several different kinds: FlowLayout (left to right, top to bottom);

BorderLayout(“center”, “north”, “south”, “east”, “west”); GridLayout
(2-D grid), GridBagLayout (makes HTML tables look simple); others

• Container state is “valid” or “invalid” depending on whether
layout manager has arranged components since last change

• Default LayoutManager for JFrame is BorderLayout

• Default for JPanel is FlowLayout

14

pack and validate

• When a container is altered, either by adding components or
changes to components (resized, contents change, etc.), the
layout needs to be updated (i.e., the container state needs to
be set to valid)
• Swing does this automatically more often than AWT, but not always

• Common methods after changing layout
• validate() – redo the layout to take into account new or changed

(sub-)components

• pack() – redo the layout using the preferred size of each (sub-)
component

15

Layout Example

• Create a JFrame with a button at the bottom and a panel in
the center

JFrame frame = new JFrame(“Trivial Window”); //default layout: Border
JPanel panel = new JPanel();

JLabel label = new JLabel(“Smile!”);

label.setHorizontalAlighment(SwingConstants.CENTER);

frame.add(panel, BorderLayout.CENTER);

frame.add(label, BorderLayout.SOUTH);

16

Graphics and Drawing
• The windows, panes, and other components supplied with Swing are

sufficient for predefined GUI components
• For more complex graphics, extend a suitable class and override the

(empty) inherited method paintComponent that draws its contents
public class Drawing extends JPanel {
...

/** Repaint this Drawing whenever requested by the system */
public void paintComponent(Graphics g) {

super.paintComponent(g); // to paint in the right order
Graphics2D g2 = (Graphics2D) g; //good idea for Swing components
g2.setColor(Color.green);
g2.drawOval(40,30,100,100);
g2.setColor(Color.red);
g2.fillRect(60, 50, 60, 60);

}
…

06-5

17

paintComponent

• Method paintComponent is called by the underlying system
whenever it needs the window to be repainted
• Triggered by window being move, resized, uncovered, expanded

from icon, etc.

• Can happen anytime – you don’t control when

• In AWT days, you overrode paint(). With Swing, it is best to leave
paint alone and override paintComponent

• If your code does something that requires repainting, call
method repaint()
• Requests that paintComponent be called sometime in the future,

when convenient for underlying system window manager

18

Painter's Rules

• Always override paintComponent() of any component you will be
drawing on
• Not necessary if you make simple changes, like changing background color, title,

etc. that don't require a graphics object

• Never call paint() or paintComponent(). Never means never!
• This is a hard rule to understand. Follow it anyway.

• Always paint the entire picture, from scratch

• Don't create a Graphics or Graphics2D object to draw with
• only use the one given to you as a parameter of paintComponent()

• and, don't save that object to reuse later!

• This rule is bent in advanced graphics applications

19

What Happens If You Don't Follow The Rules...

20

What Happens If You Don't Follow The Rules...

06-6

21

Classes Graphics and Graphics2D

• The parameter to paintComponent or paint is a graphics context
where the drawing should be done
• Class Graphics2D is a subclass of Graphics, with better features

• In Swing components, the parameter has static type Graphics, but
dynamic type Graphics2D
so cast it to a 2D and use that.

22

Drawing Graphical Objects

• Many graphical objects implement the java.awt.Shape
interface
• When possible, chose a Shape rather than a non-Shape

• Lots of methods available to draw various kinds of outline
and solid shapes and control colors and fonts
• setColor, setFont, drawArc, drawLine, fillPolygon, drawOval, fillRect,

many others

