
09-1

1

CSC 143 Java

Streams

2

Overview

• Topics
• Data representation – bits and bytes

• Streams – communicating with the outside world

• Basic Java files

• Other stream classes

3

GREAT IDEAS IN COMPUTER
SCIENCE

REPRESENTATION VS. RENDERING

4

Data Representation
• Underneath it’s all bits (binary digits – 0/1)
• Byte – group of 8 binary digits

• Smallest addressable unit of memory

• Meaning depends on interpretation
• Non-negative base-10 integers represented as base-2 integers
• Characters formats include ASCII (1 byte) or Unicode (2 byte)

encodings
01000001 = integer 65 = ASCII ‘A’

Unicode 'A' is 0000000001000001
00111111 = integer 63 = ASCII ‘?’
00110110 = integer 54 = ASCII ‘6’

• But it’s still just bits

09-2

5

Representation of Primitive Java Types
• Boolean – 1 byte (0 = false; 1 = true)

• Integer types
•byte – 1 byte (-27 = -128 to 27 - 1 = 127)

•short – 2 bytes ((-215 = -32768 to 215 – 1 = 32767)

•int – 4 bytes (((-231 = -2147483648 to 231 – 1 = 2147483647)

•long – 8 bytes (((-263 = -9223372036854775808 to 263 – 1 = 9223372036854775807)

• Floating-point (real number) types
•float – 4 bytes; approx. 6 decimal digits precision

•double – 8 bytes; approx. 15 decimal digits precision

• Character type
•char – 2 bytes; Unicode characters w/decimal values 0 to 216 – 1 = 65535

6

Unicode

• International standard
• Java was first major language to adopt

• Intended to include all the world’s writing systems

• Characters are 2 bytes (16 bits)
• Given by two Hex digits, e.g. 4EB9

• Specifications: www.unicode.org

• Unicode 3.1 (2001) introduced characters outside the
original 16-bit range

7

Input and Output

• Communicating with the outside world

Central
Processing

Unit

Main
Memory

Monitor

Network

External
Files

Keyboard mouse

8

Streams

• Java model of communication: streams
• Sequence of data flowing from a source to a program, or from a

program to a destination (sink)

• Files are common sources and sinks

input
(source)

program
output
(sink)

stream stream

09-3

9

Stream after Stream...
• Stream are a useful model for processing data along the way, in a

pipeline

input
file

(source)
decompressor

English-
to-

Japanese
translator

output
file
(sink)

encryptor

10

Streams vs. Files

• Many languages don’t make clear distinction
• Programmers, too!

• In Java:
• “file” is the collection of data, managed by the operating system

• “stream” is a flow of data from one place to another

• It’s possible for a stream to flow from or to from... URL,
remote computer, hardware device, etc.

11

Java Stream Library

• Huge variety of stream classes in java.io.*
• Some are data sources or sinks

• Others are converters that take data from a stream and transform it
somehow to produce a stream with different characteristics

• Highly modular
• Lots of different implementations all sharing a common interface;

can be mixed and matched and chained easily

• Great OO design example, in principle

• In practice, it can be very confusing

12

Common Stream Processing Pattern

• Basic idea the same for input & output
// input // output
open a stream open a stream

while more data { while more data {

read & process next data write data to stream

} }

close stream close stream

09-4

13

Opening & Closing Streams

• Before a stream can be used it must be opened
• Create a stream object and connect it to source or destination of the

stream data

• Often done implicitly as part of creating stream objects

• When we’re done with a stream, it should be closed
• Cleans up any unfinished operations, then breaks the connection

between the program and the data source/destination

14

Java Streams

• 2 major families of stream classes, based on the type of data
• Byte streams – read/write byte values

• Corresponds to physical data – network and disk I/O streams

• Abstract classes: InputStream and OutputStream

• Character streams – read/write char values
• Added in Java 1.1

• Primary (Unicode) text input/output stream classes

• Abstract classes: Reader and Writer

• System.out should be a character stream... is it??

15

Character Input Streams

16

Byte Output Streams

09-5

17

Streams and Exceptions

• All operations can throw IOException

• Normally throws a specific subclass of IOException
• depending on the actual error

• IOException is “checked” – what does this imply?

18

Basic Reader/Writer Operations

• Reader
int read(); // return Unicode value of next character; -1 if end-of-stream
int read(char[] cbuf); // read several characters into array; return -1 if end-
of-stream

void close(); // close the stream

• Writer
void write(int c); // write character whose Unicode value is c

void write(char[] cbuf); // write array contents

void write(String s); // write string
void close(); // close the stream

• To convert Unicode int to char, or vice versa: use cast syntax

19

File Readers and Writers

• To read a (Unicode) text file (not a binary data file),
instantiate FileReader
• A subclass of Reader: implements read and close operations

• Constructor takes the name of the file to open and read from

• To write to a text file, instantiate FileWriter
• A subclass of Writer: implements write and close operations

• Constructor takes the name of the file to open/create and overwrite
(can also append to an existing file using a different constructor)

20

Text Files vs Char Data

• Most of the world’s text files use 8-bit characters
• ASCII and variations of ASCII

• Internal to Java, char data is always 2-byte Unicode

• Java Reader deals only with Unicode

• Big problem: how to read and write normal (ASCII) text files
in Java?

• Solution: stream classes which adapts 8-bit chars to Unicode

09-6

21

Copy a Text File, One Character at a Time
public void copyFile(String sourceFilename, String destFilename)

throws IOException {

FileReader inFile = new FileReader(sourceFilename);

FileWriter outFile = new FileWriter(destFilename);

int ch;
while ((ch = inFile.read()) != -1) {

outFile.write(ch);

System.out.println("The next char is \"" + (char)ch + "\""); // why \" ?

}

inFile.close();
outFile.close();

}

22

More Efficient I/O – BufferedReader/Writer
• Can improve efficiency by reading/writing many characters at a time
• BufferedReader: a converter stream that performs this chunking

• BufferedReader constructor takes any kind of Reader as an argument -- can make
any read stream buffered

• BufferedReader supports standard Reader operations -- clients don't have to
change to benefit from buffering

• Also supports readLine()
String readLine(); // read an entire line of input; or null if end-of-stream reached
[handles the complexities of how end-of-line is represented on different systems]

• BufferedWriter: a converter stream that performs chunking on writes
• BufferedWriter constructor takes any kind of Writer as an argument
• BufferedWriter supports standard Writer operations
• Also supports newLine()

void newLine(); // write an end-of-line character

23

Copy a Text File, One Line at a Time
public void copyFile(String sourceFilename, String destFilename)

throws IOException {

BufferedReader inFile = new BufferedReader(new FileReader(sourceFilename));

BufferedWriter outFile = new BufferedWriter(new FileWriter(destFilename));

String line;

while ((line = inFile.readLine()) != null) {

outFile.write(line);

outFile.newLine();

System.out.println("The next line is \"" + line + "\"");

}

inFile.close();

outFile.close();
}

24

PrintWriter

• PrintWriter is another converter for a write stream
• Adds print & println methods for primitive types, strings, objects,

etc., just as we've used for System.out

• Does not throw exceptions (to make it more convenient to use)

• Optional 2nd boolean parameter in constructor to request output be
flushed (force all output to actually appear) after each println
Useful for interactive consoles where messages need to appear right away

09-7

25

Copy a Text File, Using PrintWriter
public void copyFile(String srcFilename, String destFilename)

throws IOException {

BufferedReader inFile = new BufferedReader(new FileReader(srcFilename));

PrintWriter outFile =
new PrintWriter(new BufferedWriter(new FileWriter(destFilename)));

String line;

while ((line = inFile.readLine()) != null) {

outFile.println(line);

System.out.println("The next line is \"" + line + "\"");

}
inFile.close();
outFile.close();

}

26

StringReader and StringWriter

• StringReader: convert from a String to a character stream
StringReader inStream = new StringReader("the source");
// could now write inStream to a file, or somewhere else

• StringWriter: convert from a stream to a String
StringWriter outStream = new StringWriter();

// now write onto outStream, using outStream.write(…), outStream.print(…), etc.
String theResult = outStream.toString();

27

Binary Streams
• For processing binary data (encoded characters, executable

programs, other low-level data), use InputStreams and
OutputStreams

• Operations are similar to Reader and Writer operations
• Replace char with byte in read; no write(String)

• Many analogous classes to Readers and Writers:
• FileInputStream, FileOutputStream
• BufferedInputStream, BufferedOutputStream
• ByteArrayInputStream, ByteArrayOuputStream
• ObjectInputStream, ObjectOutputStream -- read & write whole

objects!

28

Conversion from Binary to Text Streams

• InputStreamReader: creates a Reader from an InputStream
// System.in is of type InputStream
Reader inStream = new InputStreamReader(System.in);

// now can treat it nicely as a character stream

• OutputStreamWriter: creates a Writer from an OutputStream
// System.out is of type OutputStream
Writer outStream = new OutputStreamWriter(System.out);

// now can treat it nicely as a character stream

09-8

29

Network Streams
• Import java.net.*
• Use URL to create a name of something on the web
• Use openStream() method to get a InputStream on the contents of the

URL
URL url = new URL("http://www.cs.washington.edu/index.html");
InputStream inStream = url.openStream();
// now read from inStream

• Use openConnection() and URLConnection methods to get more
control

URLConnection connection = url.openConnection();
OutputStream outStream = connection.getOutputStream();
// now write to outStream (assuming target url allows writing!)

• Socket class for even more flexible network reading & writing

30

Other Possible Kinds of Stream Converters
• Compression

• Encryption

• Filtering

• Translation

• Statistics gathering

• Security monitoring

• Routing/Merging

• Reducing Bandwidth (Size & Detail), e.g. of graphics or sound
• "lossy compression"

• Noise reduction, image sharpening, …

• Many, many more…

