
1

CSC 143

Applications of Stacks and
Queues

2

Search Application

Searching for a path to escape a maze

Algorithm: try all possible sequences of moves in the maze
until either
 you find a sequence that works, or...

 no more to try

An all-possibilities search is called and “exhaustive
search”

A stack helps keep track of the possibilities
 Traces a path of moves

Popping the stack moves you backwards

Can get a similar effect without a stack, by using recursion
(recursive backtracking)

3

Another Application: Palindromes

"Madam, I'm Adam."

"Enid and Edna dine."

"A man, a plan, a canal – Panama!“

Capitalization, spacing, and punctuation are usually
ignored.

Suppose characters are arriving on a Stream Reader.
Suggest an algorithm to see if the string forms a
palindrome.
 Hint: this lecture is about stacks and queues...

 Answer: write the string to a queue and a stack. Then empty the
queue and the stack. If the output is the same, the string is a
palindrome.

4

Computers and Simulation

Computer programs are often used to “simulate”
some aspect of the real world
Movement of people and things

Economic trends

Weather forecasting

Physical, chemical, industrial processes

Why?
Cheaper, safer, more humane

But have to worry about accuracy and faithfulness to
real world

5

Queues and Simulations

Queues are often useful in simulations

Common considerations
Time between arrival

Service time

Number of servers

Often want to investigate/predict
Time spend waiting in queue

Effect of more/fewer servers

Effect of different arrival rates

6

Example: Simulation of a Bank

People arrive and get in line for a teller
 Arrival patterns may depend on time of day, day of week,

etc.

When a teller is free, person at the head of the line gets
served
 Sounds like a queue is the right data model

A bank might have different kinds of “tellers”
(commercial tellers, loan officers, etc)
 different queues for each one

Simulation can be used to answer questions like
 What is the average or longest wait in line

 What would be the effect of hiring another teller

7

Simulations in Science

Classical physics: describe the physical world with
(differential) equations
 Problem: too many interactions, equations too numerous and

complex to solve exactly

Alternative: build a model to simulate the operation

Zillions of applications in physics, weather, astronomy,
chemistry, biology, ecology, economics, etc. etc.

Ideal model would allow safe virtual experiments and
dependable conclusions

8

Time-Based Simulations

Time-based simulation
 Look and see what happens at every “tick” of the clock

Might "throw dice" to determine what happens
 Random number or probability distribution

Size of time step?
 A day, a millisecond, etc. depending on application

9

Event-Based Simulations

Event-based simulation
 Schedule future events and process each event as its time arrives

Bank simulation events
 “Customer arrives” could be one event (external)

 “Customer starts getting service” (internal)

 “Customer finishes transaction”

 “Teller goes to lunch”...

Event list holds the events waiting to happen
 Each one is processed in chronological order

 External events might come from a file, user input, etc.

 Internal events are generated by other events

10

Another Application: Evaluating Expressions

Expressions like “3 * (4 + 5)” have to be evaluated
by calculators and compilers
We’ll look first at another form of expression,
called “postfix” or “reverse Polish notation”
Turns out a stack algorithm works like magic to do
postfix evaluation
And... another stack algorithm can be used to
convert from infix to postfix!

11

Postfix vs. Infix

Review: Expressions have operators (+, -, *, /, etc) and
operands (numbers, variables)

In everyday use, we write the binary operators in
between the operands
 “4 + 5” means “add 4 and 5”

 called infix notation

No reason why we couldn’t write the two operands first,
then the operator
 “4 5 +” would mean “add 4 and 5”

 called postfix notation

12

More on Postfix

3 4 5 * - means same as (3 (4 5 *) -)
 infix: 3 - (4 * 5)

Parentheses aren’t needed!
When you see an operator:

both operands must already be available.

Stop and apply the operator, then go on

Precedence is implicit
Do the operators in the order found, period!

Practice converting and evaluating:
 1 2 + 7 * 2 %

 (3 + (5 / 3) * 6) - 4

13

Why Postfix?

Does not require parentheses!

Some calculators make you type in that way

Easy to process by a program

The processing algorithm uses a stack for
operands (data)
simple and efficient

14

Postfix Evaluation via a Stack

Read in the next “token” (operator or data)
 If data, push it on the data stack
 If (binary) operator (call it “op”):

Pop off the most recent data (B) and next most recent
(A)
Perform the operation R = A op B
Push R on the stack

Continue with the next token
When finished, the answer is the stack top.
Simple, but works like magic!
Note: "tokens" are not necessarily single characters

 In the expression 2002 56 + there are three tokens
White space is generally ignored

15

Refinements and Errors

If data stack is ever empty when data is needed for an
operation:
 Then the original expression was bad

 Too many operators up to that point

If the data stack is not empty after the last token has been
processed and the stack popped:
 Then the original expression was bad

 Too few operators or too many operands

16

Example: 3 4 5 - *

Draw the stack at each step!

Read 3. Push it (because it’s data)

Read 4. Push it.

Read 5. Push it.

Read -. Pop 5, pop 4, perform 4 - 5. Push -1

Read *. Pop -1, pop 3, perform 3 * -1. Push -3.

No more tokens. Final answer: pop the -3.
 note that stack is now empty

17

Infix vs. Postfix

Everyday life uses infix notation for expressions
Computer languages most often use infix notation
Parenthesis may be used

May be necessary to overcome precedence
May be helpful to clarify the expression

(and) are tokens
Our postfix evaluation algorithm doesn't work with infix.
Solution: convert infix to postfix, then apply postfix

evaluation algorithm.

18

Infix to Postfix

Algorithm:
Read a token
 If operand, output it immediately
 If ‘(‘, push the '(' on stack
 If operator:

if stack top is an op of >= precedence: pop and output
stop when ‘(‘ is on top or stack empty
push the new operator

 If ‘)’, pop and output until ‘(‘ has been popped
Repeat until end of input

pop rest of stack

Try it out!

