
1

CSC 143

Applications of Stacks and
Queues

2

Search Application

Searching for a path to escape a maze

Algorithm: try all possible sequences of moves in the maze
until either
 you find a sequence that works, or...

 no more to try

An all-possibilities search is called and “exhaustive
search”

A stack helps keep track of the possibilities
 Traces a path of moves

Popping the stack moves you backwards

Can get a similar effect without a stack, by using recursion
(recursive backtracking)

3

Another Application: Palindromes

"Madam, I'm Adam."

"Enid and Edna dine."

"A man, a plan, a canal – Panama!“

Capitalization, spacing, and punctuation are usually
ignored.

Suppose characters are arriving on a Stream Reader.
Suggest an algorithm to see if the string forms a
palindrome.
 Hint: this lecture is about stacks and queues...

 Answer: write the string to a queue and a stack. Then empty the
queue and the stack. If the output is the same, the string is a
palindrome.

4

Computers and Simulation

Computer programs are often used to “simulate”
some aspect of the real world
Movement of people and things

Economic trends

Weather forecasting

Physical, chemical, industrial processes

Why?
Cheaper, safer, more humane

But have to worry about accuracy and faithfulness to
real world

5

Queues and Simulations

Queues are often useful in simulations

Common considerations
Time between arrival

Service time

Number of servers

Often want to investigate/predict
Time spend waiting in queue

Effect of more/fewer servers

Effect of different arrival rates

6

Example: Simulation of a Bank

People arrive and get in line for a teller
 Arrival patterns may depend on time of day, day of week,

etc.

When a teller is free, person at the head of the line gets
served
 Sounds like a queue is the right data model

A bank might have different kinds of “tellers”
(commercial tellers, loan officers, etc)
 different queues for each one

Simulation can be used to answer questions like
 What is the average or longest wait in line

 What would be the effect of hiring another teller

7

Simulations in Science

Classical physics: describe the physical world with
(differential) equations
 Problem: too many interactions, equations too numerous and

complex to solve exactly

Alternative: build a model to simulate the operation

Zillions of applications in physics, weather, astronomy,
chemistry, biology, ecology, economics, etc. etc.

Ideal model would allow safe virtual experiments and
dependable conclusions

8

Time-Based Simulations

Time-based simulation
 Look and see what happens at every “tick” of the clock

Might "throw dice" to determine what happens
 Random number or probability distribution

Size of time step?
 A day, a millisecond, etc. depending on application

9

Event-Based Simulations

Event-based simulation
 Schedule future events and process each event as its time arrives

Bank simulation events
 “Customer arrives” could be one event (external)

 “Customer starts getting service” (internal)

 “Customer finishes transaction”

 “Teller goes to lunch”...

Event list holds the events waiting to happen
 Each one is processed in chronological order

 External events might come from a file, user input, etc.

 Internal events are generated by other events

10

Another Application: Evaluating Expressions

Expressions like “3 * (4 + 5)” have to be evaluated
by calculators and compilers
We’ll look first at another form of expression,
called “postfix” or “reverse Polish notation”
Turns out a stack algorithm works like magic to do
postfix evaluation
And... another stack algorithm can be used to
convert from infix to postfix!

11

Postfix vs. Infix

Review: Expressions have operators (+, -, *, /, etc) and
operands (numbers, variables)

In everyday use, we write the binary operators in
between the operands
 “4 + 5” means “add 4 and 5”

 called infix notation

No reason why we couldn’t write the two operands first,
then the operator
 “4 5 +” would mean “add 4 and 5”

 called postfix notation

12

More on Postfix

3 4 5 * - means same as (3 (4 5 *) -)
 infix: 3 - (4 * 5)

Parentheses aren’t needed!
When you see an operator:

both operands must already be available.

Stop and apply the operator, then go on

Precedence is implicit
Do the operators in the order found, period!

Practice converting and evaluating:
 1 2 + 7 * 2 %

 (3 + (5 / 3) * 6) - 4

13

Why Postfix?

Does not require parentheses!

Some calculators make you type in that way

Easy to process by a program

The processing algorithm uses a stack for
operands (data)
simple and efficient

14

Postfix Evaluation via a Stack

Read in the next “token” (operator or data)
 If data, push it on the data stack
 If (binary) operator (call it “op”):

Pop off the most recent data (B) and next most recent
(A)
Perform the operation R = A op B
Push R on the stack

Continue with the next token
When finished, the answer is the stack top.
Simple, but works like magic!
Note: "tokens" are not necessarily single characters

 In the expression 2002 56 + there are three tokens
White space is generally ignored

15

Refinements and Errors

If data stack is ever empty when data is needed for an
operation:
 Then the original expression was bad

 Too many operators up to that point

If the data stack is not empty after the last token has been
processed and the stack popped:
 Then the original expression was bad

 Too few operators or too many operands

16

Example: 3 4 5 - *

Draw the stack at each step!

Read 3. Push it (because it’s data)

Read 4. Push it.

Read 5. Push it.

Read -. Pop 5, pop 4, perform 4 - 5. Push -1

Read *. Pop -1, pop 3, perform 3 * -1. Push -3.

No more tokens. Final answer: pop the -3.
 note that stack is now empty

17

Infix vs. Postfix

Everyday life uses infix notation for expressions
Computer languages most often use infix notation
Parenthesis may be used

May be necessary to overcome precedence
May be helpful to clarify the expression

(and) are tokens
Our postfix evaluation algorithm doesn't work with infix.
Solution: convert infix to postfix, then apply postfix

evaluation algorithm.

18

Infix to Postfix

Algorithm:
Read a token
 If operand, output it immediately
 If ‘(‘, push the '(' on stack
 If operator:

if stack top is an op of >= precedence: pop and output
stop when ‘(‘ is on top or stack empty
push the new operator

 If ‘)’, pop and output until ‘(‘ has been popped
Repeat until end of input

pop rest of stack

Try it out!

