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CSC 143 Java

Sorting
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Sorting

• Binary search is a huge speedup over sequential search
• But requires the list be sorted

• Slight Problem: How do we get a sorted list?
• Maintain the list in sorted order as each word is added

• Sort the entire list when needed

• Many, many algorithms for sorting have been invented and 
analyzed

• Our algorithms all assume the data is already in an array
• Other starting points and assumptions are possible
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Insert for a Sorted List
• Exercise:  Assume that words[0..size-1] is sorted.  Place new word in 

correct location so modified list remains sorted
• Assume that there is spare capacity for the new word (what kind of condition is 

this?)

• Before coding:
• Draw pictures of an example situation, before and after
• Write down the postconditions for the operation

// given existing list words[0..size-1], insert word in correct place and increase size
void insertWord(String word) {

size++;
}
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Insertion Sort

• Once we have insertWord working...

• We can sort a list in place by repeating the insertion 
operation

void insertionSort( ) {

int finalSize = size;

size = 1;

for (int k = 1; k < finalSize; k++) {

insertWord(words[k]);

}

}
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Insertion Sort As A Card Game Operation

• A bit like sorting a hand full of cards dealt one by one:
• Pick up 1st card – it's sorted, the hand is sorted

• Pick up 2nd card; insert it after or before 1st – both sorted

• Pick up 3rd card; insert it after, between, or before 1st two
• … 

• Each time: 
• Determine where new card goes

• Make room for the newly inserted member.
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Insertion Sort As Invariant Progression

sorted         unsorted
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Insertion Sort 
Code (C++)

void  insert(int list[], int n) { 
int i; 
for (int j=1 ; j < n; ++j) {

// pre: 1<=j && j<n && list[0 ... j-1] in sorted order 
int temp = list[j]; 
for ( i = j-1 ; i >= 0 && list[i] > temp ; --i ) {

list[i+1] = list[i] ;
}
list[i+1] = temp ;
// post: 1<=j && j<n && list[0 ... j] in sorted order 

}
} 

sorted       unsorted

sorted           unsorted
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Insertion Sort Trace

• Initial array contents
0  pear

1  orange

2  apple
3  rutabaga

4  aardvark

5  cherry

6  banana

7  kumquat
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Insertion Sort Performance

• Cost of each insertWord operation:

• Number of times insertWord is executed:

• Total cost:

• Can we do better?

10

Analysis

• Why was binary search so much more effective than 
sequential search?
• Answer: binary search divided the search space in half each time; 

sequential search only reduced the search space by 1 item

• Why is insertion sort O(n2)?
• Each insert operation only gets 1 more item in place at cost O(n)

• O(n) insert operations

• Can we do something similar for sorting?

11

Where are we on the chart?

N log2N 5N N log2N N2 2N

===============================================================

8 3 40 24 64 256

16 4 80 64 256 65536

32 5 160 160 1024 ~109

64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

10000 13 50000 105 108 ~103010
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Divide and Conquer Sorting

• Idea: emulate binary search in some ways
1. divide the sorting problem into two subproblems; 

2. recursively sort each subproblem; 

3. combine results

• Want division and combination at the end to be fast

• Want to be able to sort two halves independently

• This is a an algorithm strategy known as “divide and 
conquer”
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Quicksort

• Invented by C. A. R. Hoare (1962)

• Idea
• Pick an element of the list: the pivot

• Place all elements of the list smaller than the pivot in the half of the 
list to its left; place larger elements to the right

• Recursively sort each of the halves

• Before looking at any code, see if you can draw pictures 
based just on the first two steps of the description

14

Code for QuickSort
// Sort words[0..size-1]

void quickSort( ) {

qsort(0, size-1);

}

// Sort words[lo..hi]

void qsort(int lo, int hi) {

// quit if empty partition

if (lo > hi) { return; }

int pivotLocation = partition(lo, hi); // partition array and return pivot loc

qsort(lo, pivotLocation-1);

qsort(pivotLocation+1, hi);

}
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Recursion Analysis

• Base case?  Yes.
// quit if empty partition

if (lo > hi) { return; }

• Recursive cases?  Yes
qsort(lo, pivotLocation-1);

qsort(pivotLocation+1, hi);

• Observation: recursive cases work on a smaller subproblem, so 
algorithm will terminate
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A Small Matter of Programming

• Partition algorithm
• Pick pivot

• Rearrange array so all smaller element are to the left, all larger to 
the right, with pivot in the middle

• Partition is not recursive

• Fact of life: partition is tricky to get right

• How do we pick the pivot?
• For now, keep it simple – use the first item in the interval

• Better strategies exist
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Partition design

• We need to partition words[lo..hi]

• Pick words[lo] as the pivot

• Picture:
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• Use first element of array section as the pivot

• Invariant:

A Partition Implementation

A  x   <=x unprocessed    >x

lo         L          R       hi

pivot
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Partition Algorithm: PseudoCode
The two-fingered method

// Partition words[lo..hi]; return location of pivot in range lo..hi

int partition(int lo, int hi)
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Partition Test

• Check: partition(0,7)
0  orange

1  pear

2  apple
3  rutabaga

4  aardvark

5  cherry

6  banana

7  kumquat
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Complexity of QuickSort

• Each call to Quicksort (ignoring recursive calls):
• One call to partition = O(n), where n is size of part of 

array being sorted
Note: This n is smaller than the N of the original problem

• Some O(1) work

• Total = O(n) for n the size of array part being sorted

• Including recursive calls:
• Two recursive calls at each level of recursion, each partitions “half” 

the array at a cost of O(N/2)

• How many levels of recursion?
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QuickSort (Ideally)

N

N/2 N/2

N/4 N/4 N/4 N/4

1

0 0

1

0 0

1

0 0

1

0 0...

... ...

All boxes are executed (except 
some of the 0 cases)

Total work at each level is O(N)
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QuickSort Performance (Ideal Case)

• Each partition divides the list parts in half
• Sublist sizes on recursive calls: n, n/2, n/4, n/8….

• Total depth of recursion: __________________

• Total work at each level: O(n)

• Total cost of quicksort: ________________ !

• For a list of 10,000 items
• Insertion sort: O(n2): 100,000,000

• Quicksort: O(n log n): 10,000 log2 10,000 = 132,877 

24

Best Case for QuickSort

• Assume partition will split array exactly in half

• Depth of recursion is then log2 N

• Total work is O(N)*O(log N ) = O(N log N), much 
better than O(N2) for selection sort

• Example: Sorting 10,000 items:

• Selection sort: 10,0002 = 100,000,000

• Quicksort: 10,000 log2 10,000  132,877
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Worst Case for QuickSort

• If we’re very unlucky, then each pass through partition 
removes only a single element.

• In this case, we have N levels of recursion rather than log2N.  
What’s the total complexity?

1 2 3 4

1 2 3 4

2 3 4

3 4

1 2 3 4
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QuickSort Performance (Worst Case)

• Each partition manages to pick the largest or smallest item in 
the list as a pivot
• Sublist sizes on recursive calls:

• Total depth of recursion: __________________

• Total work at each level: O(n)

• Total cost of quicksort: ________________ !
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Worst Case vs Average Case

• QuickSort has been shown to work well in the average case 
(mathematically speaking)

• In practice, Quicksort works well, provided the pivot is picked 
with some care

• Some strategies for choosing the pivot:
• Compare a small number of list items (3-5) and pick the median for 

the pivot

• Pick a pivot element randomly in the range lo..hi
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QuickSort as an Instance of Divide and Conquer

Generic Divide and 
Conquer

QuickSort

1. Divide Pick an element of the list: the pivot

Place all elements of the list smaller than the 
pivot in the half of the list to its left; place larger 
elements to the right

2. Solve subproblems 
separately (and 
recursively)

Recursively sort each of the halves

3. Combine subsolutions 
to get overall solution

Surprise! Nothing to do
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Another Divide-and-Conquer Sort: Mergesort

• 1. Split array in half
• just take the first half and the second half of the array, without

rearranging

• 2. Sort the halves separately
• 3. Combining the sorted halves (“merge”)

• repeatedly pick the least element from each array
• compare, and put the smaller in the resulting array
• example: if the two arrays are

1 12 15 20
5 6 13 21 30

The "merged" array is
1 5  6 12 13 15 20 21  30

• note: we will need a temporary result array
30

Summary
• Recursion

• Methods that call themselves
• Need base case(s) and recursive case(s)
• Recursive cases need to progress toward a base case
• Often a very clean way to formulate a problem (let the function call 

mechanism handle bookkeeping behind the scenes)

• Divide and Conquer
• Algorithm design strategy that exploits recursion
• Divide original problem into subproblems
• Solve each subproblem recursively
• Can sometimes yield dramatic performance improvements


