
1

1

CSC 143 Java

Sorting

2

Sorting

• Binary search is a huge speedup over sequential search
• But requires the list be sorted

• Slight Problem: How do we get a sorted list?
• Maintain the list in sorted order as each word is added

• Sort the entire list when needed

• Many, many algorithms for sorting have been invented and
analyzed

• Our algorithms all assume the data is already in an array
• Other starting points and assumptions are possible

3

Insert for a Sorted List
• Exercise: Assume that words[0..size-1] is sorted. Place new word in

correct location so modified list remains sorted
• Assume that there is spare capacity for the new word (what kind of condition is

this?)

• Before coding:
• Draw pictures of an example situation, before and after
• Write down the postconditions for the operation

// given existing list words[0..size-1], insert word in correct place and increase size
void insertWord(String word) {

size++;
}

4

Insertion Sort

• Once we have insertWord working...

• We can sort a list in place by repeating the insertion
operation

void insertionSort() {

int finalSize = size;

size = 1;

for (int k = 1; k < finalSize; k++) {

insertWord(words[k]);

}

}

2

5

Insertion Sort As A Card Game Operation

• A bit like sorting a hand full of cards dealt one by one:
• Pick up 1st card – it's sorted, the hand is sorted

• Pick up 2nd card; insert it after or before 1st – both sorted

• Pick up 3rd card; insert it after, between, or before 1st two
• …

• Each time:
• Determine where new card goes

• Make room for the newly inserted member.

6

Insertion Sort As Invariant Progression

sorted unsorted

7

Insertion Sort
Code (C++)

void insert(int list[], int n) {
int i;
for (int j=1 ; j < n; ++j) {

// pre: 1<=j && j<n && list[0 ... j-1] in sorted order
int temp = list[j];
for (i = j-1 ; i >= 0 && list[i] > temp ; --i) {

list[i+1] = list[i] ;
}
list[i+1] = temp ;
// post: 1<=j && j<n && list[0 ... j] in sorted order

}
}

sorted unsorted

sorted unsorted

8

Insertion Sort Trace

• Initial array contents
0 pear

1 orange

2 apple
3 rutabaga

4 aardvark

5 cherry

6 banana

7 kumquat

3

9

Insertion Sort Performance

• Cost of each insertWord operation:

• Number of times insertWord is executed:

• Total cost:

• Can we do better?

10

Analysis

• Why was binary search so much more effective than
sequential search?
• Answer: binary search divided the search space in half each time;

sequential search only reduced the search space by 1 item

• Why is insertion sort O(n2)?
• Each insert operation only gets 1 more item in place at cost O(n)

• O(n) insert operations

• Can we do something similar for sorting?

11

Where are we on the chart?

N log2N 5N N log2N N2 2N

===

8 3 40 24 64 256

16 4 80 64 256 65536

32 5 160 160 1024 ~109

64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

10000 13 50000 105 108 ~103010

12

Divide and Conquer Sorting

• Idea: emulate binary search in some ways
1. divide the sorting problem into two subproblems;

2. recursively sort each subproblem;

3. combine results

• Want division and combination at the end to be fast

• Want to be able to sort two halves independently

• This is a an algorithm strategy known as “divide and
conquer”

4

13

Quicksort

• Invented by C. A. R. Hoare (1962)

• Idea
• Pick an element of the list: the pivot

• Place all elements of the list smaller than the pivot in the half of the
list to its left; place larger elements to the right

• Recursively sort each of the halves

• Before looking at any code, see if you can draw pictures
based just on the first two steps of the description

14

Code for QuickSort
// Sort words[0..size-1]

void quickSort() {

qsort(0, size-1);

}

// Sort words[lo..hi]

void qsort(int lo, int hi) {

// quit if empty partition

if (lo > hi) { return; }

int pivotLocation = partition(lo, hi); // partition array and return pivot loc

qsort(lo, pivotLocation-1);

qsort(pivotLocation+1, hi);

}

15

Recursion Analysis

• Base case? Yes.
// quit if empty partition

if (lo > hi) { return; }

• Recursive cases? Yes
qsort(lo, pivotLocation-1);

qsort(pivotLocation+1, hi);

• Observation: recursive cases work on a smaller subproblem, so
algorithm will terminate

16

A Small Matter of Programming

• Partition algorithm
• Pick pivot

• Rearrange array so all smaller element are to the left, all larger to
the right, with pivot in the middle

• Partition is not recursive

• Fact of life: partition is tricky to get right

• How do we pick the pivot?
• For now, keep it simple – use the first item in the interval

• Better strategies exist

5

17

Partition design

• We need to partition words[lo..hi]

• Pick words[lo] as the pivot

• Picture:

18

• Use first element of array section as the pivot

• Invariant:

A Partition Implementation

A x <=x unprocessed >x

lo L R hi

pivot

19

Partition Algorithm: PseudoCode
The two-fingered method

// Partition words[lo..hi]; return location of pivot in range lo..hi

int partition(int lo, int hi)

20

Partition Test

• Check: partition(0,7)
0 orange

1 pear

2 apple
3 rutabaga

4 aardvark

5 cherry

6 banana

7 kumquat

6

21

Complexity of QuickSort

• Each call to Quicksort (ignoring recursive calls):
• One call to partition = O(n), where n is size of part of

array being sorted
Note: This n is smaller than the N of the original problem

• Some O(1) work

• Total = O(n) for n the size of array part being sorted

• Including recursive calls:
• Two recursive calls at each level of recursion, each partitions “half”

the array at a cost of O(N/2)

• How many levels of recursion?

22

QuickSort (Ideally)

N

N/2 N/2

N/4 N/4 N/4 N/4

1

0 0

1

0 0

1

0 0

1

0 0...

... ...

All boxes are executed (except
some of the 0 cases)

Total work at each level is O(N)

23

QuickSort Performance (Ideal Case)

• Each partition divides the list parts in half
• Sublist sizes on recursive calls: n, n/2, n/4, n/8….

• Total depth of recursion: __________________

• Total work at each level: O(n)

• Total cost of quicksort: ________________ !

• For a list of 10,000 items
• Insertion sort: O(n2): 100,000,000

• Quicksort: O(n log n): 10,000 log2 10,000 = 132,877

24

Best Case for QuickSort

• Assume partition will split array exactly in half

• Depth of recursion is then log2 N

• Total work is O(N)*O(log N) = O(N log N), much
better than O(N2) for selection sort

• Example: Sorting 10,000 items:

• Selection sort: 10,0002 = 100,000,000

• Quicksort: 10,000 log2 10,000 132,877

7

25

Worst Case for QuickSort

• If we’re very unlucky, then each pass through partition
removes only a single element.

• In this case, we have N levels of recursion rather than log2N.
What’s the total complexity?

1 2 3 4

1 2 3 4

2 3 4

3 4

1 2 3 4

26

QuickSort Performance (Worst Case)

• Each partition manages to pick the largest or smallest item in
the list as a pivot
• Sublist sizes on recursive calls:

• Total depth of recursion: __________________

• Total work at each level: O(n)

• Total cost of quicksort: ________________ !

27

Worst Case vs Average Case

• QuickSort has been shown to work well in the average case
(mathematically speaking)

• In practice, Quicksort works well, provided the pivot is picked
with some care

• Some strategies for choosing the pivot:
• Compare a small number of list items (3-5) and pick the median for

the pivot

• Pick a pivot element randomly in the range lo..hi

28

QuickSort as an Instance of Divide and Conquer

Generic Divide and
Conquer

QuickSort

1. Divide Pick an element of the list: the pivot

Place all elements of the list smaller than the
pivot in the half of the list to its left; place larger
elements to the right

2. Solve subproblems
separately (and
recursively)

Recursively sort each of the halves

3. Combine subsolutions
to get overall solution

Surprise! Nothing to do

8

29

Another Divide-and-Conquer Sort: Mergesort

• 1. Split array in half
• just take the first half and the second half of the array, without

rearranging

• 2. Sort the halves separately
• 3. Combining the sorted halves (“merge”)

• repeatedly pick the least element from each array
• compare, and put the smaller in the resulting array
• example: if the two arrays are

1 12 15 20
5 6 13 21 30

The "merged" array is
1 5 6 12 13 15 20 21 30

• note: we will need a temporary result array
30

Summary
• Recursion

• Methods that call themselves
• Need base case(s) and recursive case(s)
• Recursive cases need to progress toward a base case
• Often a very clean way to formulate a problem (let the function call

mechanism handle bookkeeping behind the scenes)

• Divide and Conquer
• Algorithm design strategy that exploits recursion
• Divide original problem into subproblems
• Solve each subproblem recursively
• Can sometimes yield dramatic performance improvements

