CSC 143 Java

Searching

Overview

+ Topics
+ Maintaining an ordered list
+ Sequential and binary search
* Recursion
+ Sorting: insertion sort and QuickSort

Problem: A Word Dictionary

+ Suppose we want to maintain a real dictionary. Data is a list

of <word, definition> pairs -- a "Map" structure
<“aardvark”, “an animal that starts with an A and ends with a K>
<“apple”, “a leading product of Washington state™
<'banana’, “a fruit imported from somewhere else”>
etc.

+ We want to be able to do the following operations efficiently

+ Look up a definition given a word (key)
+ Retrieve sequences of definitions in alphabetical order

Representation

* Need to pick a data structure
* Analyze possibilities based on cost of operations

search access next in order
+ Unordered list O(N) O(N)
+ Ordered list O(log N) 0o(1)

16-1

Ordered List

Sequential (Linear) Search

+ One solution: keep list in alphabetical order

+ To simplify the explanations for the present: we'll treat the list
as an array of strings, and assume it has sufficient capacity
to add additional word/def's when needed

0 aardvark Il'instance variable of the Ordered List class

1 apple String[] words; // list is stored in words[0..size-1]
2 banana int size; I14# of words

3 cherry

4 kumquat

5 orange

6 pear

7 rutabaga

+ Assuming the list is initialized in alphabetical order, we can

use a linear search to locate a word
Il return location of word in words, or -1 if found
int find(String word) {
intk=0;
while (k < size && word.equals(words[K]) {
k++
}
if (k < size) { return k; } else { return—1;} // lousy indenting to fit on slide
} Il don’t do this at home

* Time for list of size n: O(n) We can do better!

Can we do better?

Binary Search (with a loop)

*Yes! Ifarray is sorted
* Binary search:
+ Examine middle element
+ Search either left or right half depending on whether desired word
precedes or follows middle word alphabetically
* The list being sorted is a precondition of binary search.

+ The algorithm is not guaranteed to give the correct answer if the
precondition is violated.

/I Return location of word in words, or — (where it would be + 1)
int find(String word) {
intlo =0, hi = size - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
int comp = word.compareTo(words[mid]);
if (comp == 0) { return mid; }
else if (comp < 0) {hi=mid-1;}
else /*comp>0*/{lo=mid + 1;}
}

return —o - 1

16-2

Binary Search (recursion)

I/ Return location of word in words, or — (where it would be + 1)
int find(String word) {

return bSearch(0, size-1);
}
Il Return location of word in wordsf[lo..hi] or -1 if not found
int bSearch(String word, int lo, int hi) {

I return —(where it would be + 1) if interval lo..hi is empty

if (lo > hi) {return —lo-1;}

Il search words[lo..hi]

int mid = (lo + hi) / 2;

int comp = word.compareTo(words[mid]);

if (comp == 0) { return mid; }

else if (comp < 0) {return bSearch(lo, mid - 1); }

else /* comp > 0 */{ return bSearch(mid + 1, hi); }

Recursion

« Amethod (function) that calls itself is recursive
* Nothing really new here
* Method call review:

+ Evaluate argument expressions

+ Allocate space for parameters and local variables of function being
called

+ Initialize parameters with argument values
* Then execute the function body
+ What if the function being called is the same one that is
doing the calling?
+ Answer: no difference at all!

Wrong Way to Think About It

Right Way to Think About It

bSearch

16-3

Trace

Trace

« Trace execution of find(“orange”)
0 aardvark
1 apple
2 banana
3 cherry
4 kumquat
5 orange
6 pear
7 rutabaga

lo | hi mid
3 (“cherry”)
5 (“orange)

S~ o
~ |~

5 is returned

« Trace execution of find(“kiwi”)

0 aardvark

1 apple

2 banana

3 cherry lo|hi| mid

4 kumquat “ ”

5 orange 0 | 7|3 (“cherry’)

6 pear 4 | 7|5 (‘orange)

7 rutabaga 4 | 4|4 (*kumpat)
413 lo > hi

-(4 + 1) =-5is returned (since if *kiwi” was in the array, it would be at postion 4)

Performance of Binary Search

Binary Search Sizes

* Analysis
+ Time (number of steps) per each recursive call: O(1)
» Number of recursive calls: O(log N)
+ Total time: O(log N)

+ A picture helps

Any given run of B.S. will
follow only one path from
the root to a leaf’

All paths from the size N case
to a size 0 case are the same

length: 1+1og,N

N4 [Na | Na | | e

(1] [/T\
0107 [61Ta] 01 {07 640y

16-4

Linear Search vs. Binary Search

More About Recursion

+ Compare to linear search
« Time to search 10, 100, 1000, 1,000,000 words
Linear 10, 100, 1000, 1,000,000

Binary~1,2,3,6

+ What is incremental cost if size of list is doubled?
Linear x 2, binary + log(2)
* Why is Binary search faster?
+ The data structure is the same
+ The precondition on the data structure is different: stronger
* Recursion itself is not an explanation
One could code linear search using recursion

Arecursive function needs three things to work properly

1. One or more base cases that are not recursive
+ if(lo>hi) {return-1;}
+ i (comp == 0) { return mid; }

2. One or more recursive cases that handle a else if
(comp < 0) { return bsearch(word,lo,mid-1); }
. else /* comp > 0 */ { return bsearch(word,mid+1,hi); }

3. The recursive cases must lead to “smaller” instances of
the problem

+ "Smaller" means: closer to a base case
Without "smaller", what might happen?

16-5

