
16-1

1

CSC 143 Java

Searching

2

Overview

• Topics
• Maintaining an ordered list

• Sequential and binary search

• Recursion

• Sorting: insertion sort and QuickSort

3

Problem: A Word Dictionary

• Suppose we want to maintain a real dictionary. Data is a list
of <word, definition> pairs -- a "Map" structure

<“aardvark”, “an animal that starts with an A and ends with a K”>

<“apple”, “a leading product of Washington state”>
<“banana”, “a fruit imported from somewhere else”>

etc.

• We want to be able to do the following operations efficiently
• Look up a definition given a word (key)

• Retrieve sequences of definitions in alphabetical order

4

Representation

• Need to pick a data structure

• Analyze possibilities based on cost of operations
search access next in order

• Unordered list O(N) O(N)

• Ordered list O(log N) O(1)

16-2

5

Ordered List

• One solution: keep list in alphabetical order

• To simplify the explanations for the present: we’ll treat the list
as an array of strings, and assume it has sufficient capacity
to add additional word/def's when needed

0 aardvark // instance variable of the Ordered List class

1 apple String[] words; // list is stored in words[0..size-1]

2 banana int size; // # of words

3 cherry

4 kumquat

5 orange

6 pear

7 rutabaga

6

Sequential (Linear) Search

• Assuming the list is initialized in alphabetical order, we can
use a linear search to locate a word

// return location of word in words, or –1 if found

int find(String word) {
int k = 0;

while (k < size && !word.equals(words[k]) {

k++

}

if (k < size) { return k; } else { return –1; } // lousy indenting to fit on slide

} // don’t do this at home

• Time for list of size n: O(n) We can do better!

7

Can we do better?

• Yes! If array is sorted

• Binary search:
• Examine middle element

• Search either left or right half depending on whether desired word
precedes or follows middle word alphabetically

• The list being sorted is a precondition of binary search.
• The algorithm is not guaranteed to give the correct answer if the

precondition is violated.

8

Binary Search (with a loop)
// Return location of word in words, or – (where it would be + 1)
int find(String word) {

int lo = 0, hi = size – 1;
while (lo <= hi) {

int mid = (lo + hi) / 2;
int comp = word.compareTo(words[mid]);
if (comp == 0) { return mid; }
else if (comp < 0) { hi = mid – 1;}
else /* comp > 0 */ { lo = mid + 1; }

}
return –lo - 1

}

16-3

9

Binary Search (recursion)
// Return location of word in words, or – (where it would be + 1)
int find(String word) {

return bSearch(0, size-1);
}
// Return location of word in words[lo..hi] or –1 if not found
int bSearch(String word, int lo, int hi) {

// return –(where it would be + 1) if interval lo..hi is empty
if (lo > hi) { return –lo - 1; }
// search words[lo..hi]
int mid = (lo + hi) / 2;
int comp = word.compareTo(words[mid]);
if (comp == 0) { return mid; }
else if (comp < 0) { return bSearch(lo, mid - 1); }
else /* comp > 0 */ { return bSearch(mid + 1, hi); }

}
10

Recursion
• A method (function) that calls itself is recursive
• Nothing really new here
• Method call review:

• Evaluate argument expressions
• Allocate space for parameters and local variables of function being

called
• Initialize parameters with argument values
• Then execute the function body

• What if the function being called is the same one that is
doing the calling?
• Answer: no difference at all!

11

Wrong Way to Think About It

...
bSearch(array, lo, mid-1)

...

bSearch

12

Right Way to Think About It

...
bSearch(array, lo, mid-1)

...

bSearch

...
bSearch(array, lo, mid-1)

...

bSearch

16-4

13

Trace

• Trace execution of find(“orange”)
0 aardvark

1 apple

2 banana
3 cherry

4 kumquat

5 orange

6 pear

7 rutabaga

5 is returned

Llo hi mid

0 7 3 (“cherry”)

4 7 5 (“orange)

14

Trace

• Trace execution of find(“kiwi”)
0 aardvark

1 apple

2 banana
3 cherry

4 kumquat

5 orange

6 pear

7 rutabaga

-(4 + 1) = -5 is returned (since if “kiwi” was in the array, it would be at postion 4)

Llo hi mid

0 7 3 (“cherry”)

4 7 5 (“orange)

4 4 4 (“kumpat)

4 3 lo > hi

15

Performance of Binary Search

• Analysis
• Time (number of steps) per each recursive call: O(1)

• Number of recursive calls: O(log N)

• Total time: O(log N)

• A picture helps

16

Binary Search Sizes

N

N/2 N/2

N/4 N/4 N/4 N/4

1

0 0

1

0 0

1

0 0

1

0 0...

... ...

All paths from the size N case
to a size 0 case are the same

length: 1+log2N

Any given run of B.S. will
follow only one path from
the root to a leaf

16-5

17

Linear Search vs. Binary Search
• Compare to linear search

• Time to search 10, 100, 1000, 1,000,000 words
Linear 10, 100, 1000, 1,000,000

Binary ~ 1, 2, 3, 6

• What is incremental cost if size of list is doubled?
Linear x 2, binary + log(2)

• Why is Binary search faster?
• The data structure is the same
• The precondition on the data structure is different: stronger
• Recursion itself is not an explanation

One could code linear search using recursion
18

More About Recursion

A recursive function needs three things to work properly

1. One or more base cases that are not recursive
• if (lo > hi) { return –1; }

• if (comp == 0) { return mid; }

2. One or more recursive cases that handle a else if
(comp < 0) { return bsearch(word,lo,mid-1); }
• else /* comp > 0 */ { return bsearch(word,mid+1,hi); }

3. The recursive cases must lead to “smaller” instances of
the problem
• "Smaller" means: closer to a base case

• Without "smaller", what might happen?

