
1

CSC 143

Recursion

2

Recursion
 A recursive definition is one which is defined in

terms of itself.
 Example:

 Sum of the first n positive integers
• if n>1, equal to n + sum of the first n-1

positive integers
• if n=1, the sum is 1 (base case)

 Palindrome
• if the number of characters is >1, a piece

of text is a palindrome if it starts and ends
with the same letter and what is in
between is a palindrome.

• a word with 0 or 1 character is a
palindrome (base case)

3

Motivation

 Divide and conquer

 Express the problem in terms of a simpler
problem

 Factorial n

 with a loop n!=1*2*3*…*(n-1)*n

  with recursion

n!=n*(n-1)! if n>1

1!=1

4

n! with a loop

 Compute n!=1*2*…*(n-1)*n
public long factorial(int n)
{

// with a loop
long result=1;
while(n>1){

result*=n;
n--;

}
return result;

}

5

n! with recursion
 Write n!=n*(n-1)!

public long factorial(int n)
{

// with recursion
long result;
if (n>1)
result=n*factorial(n-1);

else
result=1; // base case

return result;
}

 How does it work? Recall that a method
call is done by value in java.

6

4

4 * factorial(3)

3

3 * factorial(2)

2

2 * factorial(1)

1
1

1

2

6
n

result

n

result

n
result

factorial(4)

n

result

24 (=4!)
different memory
locations

7

Activation Records
 Recall that local variables and parameters are

allocated when a method is entered, deleted
when the method exits (automatic storage).

 Whenever a method is called, a new
activation record is pushed on the call stack,
containing:
 a separate copy of all local variables
 control flow info (e.g. return address)

 Activation record is popped at end of method
 A recursive method call is handled the same

way
 Each recursive call has its own copy of

locals 8

Infinite Recursion
 Make sure that recursion will eventually end

with one of the base cases.
public long factorial(int n) {

long result = factorial(n-1); //oups!
if (n==1) // the control flow never gets

// to this line
result=1;

else
result *=n;

return result;
}

 What happens? Whatever the value of n,
factorial(n-1) is called. It ends with a stack
overflow error.

 Make sure that you test for the base case
before calling the method again.

9

Recursion versus loops
 Any recursive algorithm can be rewritten as

an iterative algorithm
 What is best?

 Some problems are more elegantly solved
with recursion. Others with iterations.

 Recursion is slightly more expensive. An
activation record is pushed on and later
popped from the stack for each recursive call

10

The towers of Hanoi (1)

 Move the tower of disks from the left to the
right peg.

 A larger disk can't be placed on top of a
smaller disk. Solution?

 Beautifully solved with recursion. More difficult
with a loop.

11

The towers of Hanoi (2)

 Recursive algorithm: move n disks in terms of
moving n-1 disks
 Base case: 1 disk
 To move n disks from the left to the right peg,

• move the n-1 top disks from the left to the
middle peg

• move the one remaining disk on the left
peg to the right peg

• move the n-1 disks on the middle peg to
the right peg.

12

The towers of Hanoi (3)
public void move
(int n,int peginit,int pegfinal, int pegtemp) {
// move n disks from peginit to pegfinal, using
// pegtemp as a temporary holding area
if (n ==1)
{System.out.println("move top disk from "+
peginit+" to " + pegfinal);}

else
{
//move n -1 disks to pegtemp
move(n-1,peginit,pegtemp,pegfinal);
//move the remaining disk to pegfinal
move(1,peginit,pegfinal,pegtemp);
//move n -1 disks to pegfinal
move(n-1,pegtemp,pegfinal,peginit);

}
}

