
1

CSC 143

Recursion

2

Recursion
 A recursive definition is one which is defined in

terms of itself.
 Example:

 Sum of the first n positive integers
• if n>1, equal to n + sum of the first n-1

positive integers
• if n=1, the sum is 1 (base case)

 Palindrome
• if the number of characters is >1, a piece

of text is a palindrome if it starts and ends
with the same letter and what is in
between is a palindrome.

• a word with 0 or 1 character is a
palindrome (base case)

3

Motivation

 Divide and conquer

 Express the problem in terms of a simpler
problem

 Factorial n

 with a loop n!=1*2*3*…*(n-1)*n

 with recursion

n!=n*(n-1)! if n>1

1!=1

4

n! with a loop

 Compute n!=1*2*…*(n-1)*n
public long factorial(int n)
{

// with a loop
long result=1;
while(n>1){

result*=n;
n--;

}
return result;

}

5

n! with recursion
 Write n!=n*(n-1)!

public long factorial(int n)
{

// with recursion
long result;
if (n>1)
result=n*factorial(n-1);

else
result=1; // base case

return result;
}

 How does it work? Recall that a method
call is done by value in java.

6

4

4 * factorial(3)

3

3 * factorial(2)

2

2 * factorial(1)

1
1

1

2

6
n

result

n

result

n
result

factorial(4)

n

result

24 (=4!)
different memory
locations

7

Activation Records
 Recall that local variables and parameters are

allocated when a method is entered, deleted
when the method exits (automatic storage).

 Whenever a method is called, a new
activation record is pushed on the call stack,
containing:
 a separate copy of all local variables
 control flow info (e.g. return address)

 Activation record is popped at end of method
 A recursive method call is handled the same

way
 Each recursive call has its own copy of

locals 8

Infinite Recursion
 Make sure that recursion will eventually end

with one of the base cases.
public long factorial(int n) {

long result = factorial(n-1); //oups!
if (n==1) // the control flow never gets

// to this line
result=1;

else
result *=n;

return result;
}

 What happens? Whatever the value of n,
factorial(n-1) is called. It ends with a stack
overflow error.

 Make sure that you test for the base case
before calling the method again.

9

Recursion versus loops
 Any recursive algorithm can be rewritten as

an iterative algorithm
 What is best?

 Some problems are more elegantly solved
with recursion. Others with iterations.

 Recursion is slightly more expensive. An
activation record is pushed on and later
popped from the stack for each recursive call

10

The towers of Hanoi (1)

 Move the tower of disks from the left to the
right peg.

 A larger disk can't be placed on top of a
smaller disk. Solution?

 Beautifully solved with recursion. More difficult
with a loop.

11

The towers of Hanoi (2)

 Recursive algorithm: move n disks in terms of
moving n-1 disks
 Base case: 1 disk
 To move n disks from the left to the right peg,

• move the n-1 top disks from the left to the
middle peg

• move the one remaining disk on the left
peg to the right peg

• move the n-1 disks on the middle peg to
the right peg.

12

The towers of Hanoi (3)
public void move
(int n,int peginit,int pegfinal, int pegtemp) {
// move n disks from peginit to pegfinal, using
// pegtemp as a temporary holding area
if (n ==1)
{System.out.println("move top disk from "+
peginit+" to " + pegfinal);}

else
{
//move n -1 disks to pegtemp
move(n-1,peginit,pegtemp,pegfinal);
//move the remaining disk to pegfinal
move(1,peginit,pegfinal,pegtemp);
//move n -1 disks to pegfinal
move(n-1,pegtemp,pegfinal,peginit);

}
}

