CSC 143

Recursion

Recursion

A recursive definition is one which is defined in
terms of itself.

Example:

Sum of the first n positive integers
if n>1, equal to n + sum of the first n-1
positive integers
if n=1, the sum is 1 (base case)

Palindrome
if the number of characters is >1, a piece
of text is a palindrome if it starts and ends
with the same letter and what is in
between is a palindrome.
a word with 0 or 1 character is a
palindrome (base case)

Motivation

Divide and conquer

Express the problem in terms of a simpler
problem

Factorial n
with a loop n!=1*2*3*...*(n-1)*n
with recursion
n!=n*(n-1)! if n>1
11=1

n! with a loop

Compute n!=1*2*...*(n-1)*n
public long factorial (int n)
{
// with a loop
long result=1;
while (n>1) {
result*=n;
n--;
}

return result;

n! with recursion
Write n!=n*(n-1)!

public long factorial(int n)

{

// with recursion
long result;
if (n>1)
result=n*factorial (n-1) ;
else
result=1l; // base case
return result;
}
How does it work? Recall that a method
call is done by value in java.

factorial(4) different memory
24 (=4
\4 ﬁ 4 ocations
n

4* fachriaI(3) result

-

3 * factorial(2) result

Activation Records

Recall that local variables and parameters are
allocated when a method is entered, deleted
when the method exits (automatic storage).

Whenever a method is called, a new
activation record is pushed on the call stack,
containing:

a separate copy of all local variables

control flow info (e.g. return address)
Activation record is popped at end of method
A recursive method call is handled the same
way

Each recursive call has its own copy of

locals 7

Infinite Recursion

Make sure that recursion will eventually end
with one of the base cases.
public long factorial(int n) {
long result = factorial (n-1); //oups!
if (n==1) // the control flow never gets
// to this line
result=1;
else
result *=n;
return result;

}

What happens? Whatever the value of n,
factorial(n-1) is called. It ends with a stack
overflow error.

Make sure that you test for the base case
before calling the method again. .

Recursion versus loops

Any recursive algorithm can be rewritten as

an iterative algorithm

What is best?
Some problems are more elegantly solved
with recursion. Others with iterations.
Recursion is slightly more expensive. An

activation record is pushed on and later
popped from the stack for each recursive call

The towers of Hanoi (1)

&
Move the tower of disks from the left to the
right peg.

A larger disk can't be placed on top of a
smaller disk. Solution?

Beautifully solved with recursion. More difficult
with a loop.

The towers of Hanoi (2)

Recursive algorithm: move n disks in terms of
moving n-1 disks
Base case: 1 disk
To move n disks from the left to the right peg,
move the n-1 top disks from the left to the
middle peg
move the one remaining disk on the left
peg to the right peg
move the n-1 disks on the middle peg to
the right peg.

The towers of Hanoi (3)

public void move
(int n,int peginit,int pegfinal, int pegtemp) {
// move n disks from peginit to pegfinal, using
// pegtemp as a temporary holding area
if (n ==1)
{System.out.println("move top disk from "+
peginit+" to " + pegfinal);}
else

//move n -1 disks to pegtemp

move (n-1,peginit,pegtemp,pegfinal) ;
//move the remaining disk to pegfinal
move (1,peginit,pegfinal,pegtemp) ;
//move n -1 disks to pegfinal

move (n-1,pegtemp,pegfinal ,peginit) ;

