
07-1

1

CSC 143

Model, View, Controller design pattern

2

Overview

• Topics
• Displaying dynamic data

• Model-View

• Model-View-Controller (MVC)

• Reading:
• Textbook: Ch. 20

3

Review: Repainting the Screen

• GUI components such as JPanels can draw on themselves
using a Graphics context

• Problem: Drawings aren’t permanent – need to be refreshed
• Window may get hidden, moved, minimized, etc.

• Even components like buttons, listboxes, file choosers etc.
also must render themselves.
• Seldom a reason to override paint for such components. There are

indirect but more convenient ways to change the rendering.

• Solution: A "callback" method called paintComponent

4

Review: Using paintComponent
• Or just plain paint for older AWT components.

• Every Component subclass has a paint (paintComponent) method
• Called automatically by the system when component needs redrawing

• Program can override paintComponent to get the Graphics and draw
what is desired

• To request the image be updated, send it a "repaint" message
• paintComponent() is eventually called

• Footnote: "Render" is the word for producing the actual visual image
• Rendering may take place at multiple levels

• Ultimate rendering is done by low-level software and/or hardware

07-2

5

Drawing Based on Stored Data
• Problem: how does paintComponent() know what to paint?

• The picture might need to change over time, too.

• Answer: we need to store the information somewhere
• Where? Some possibilities

• Store detailed graphical information in the component
Lines, shapes, colors, positions, etc.
Probably in an instance variable, accessible to paintComponent

• Store underlying information in the component
• Store objects that know how to paint themselves
• Store references to the underlying data and query it as needed

data object returns information in a form that might differ from the underlying data
paintComponent translates the data into graphics

• All of these approaches can be made to work. What is best?

6

Model-View-Controller Pattern
• Idea: want to separate the underlying data from the code that

renders it
• Good design because it separates issues
• Consistent with object-oriented principles
• Allows multiple views of the same data

• Model-View-Controller pattern
• Originated in the Smalltalk community in 1970’s
• Used throughout Swing

Although not always obvious on the surface

• Widely used in commercial programming
• Recommended practice for graphical applications

7

MVC Overview
• Model

• Contains the “truth” – data or state of the system

• "Model" is a poor word. "Content" or "underlying data" would be better.

• View
• Renders the information in the model to make it visible to users in desired formats

Graphical display, dancing bar graphs, printed output, network stream….

• Controller
• Reacts to user input (mouse, keyboard) and other events

• Coordinates the models and views
Might create the model or view

Might pass a model reference to a view or vice versa

8

MVC Interactions and Roles
• Model

• Maintains the data in some internal representation
• Supplies data to view when requested

Possibly in a different representation
• Advanced: Notifies viewers when model has changed and view update might be

needed
• Generally unaware of the display details

• View
• Maintains details about the display environment
• Gets data from the model when it needs to
• Renders data when requested (by the system or the controller, etc.)
• Advanced: Catches user interface events and notifies controller

• Controller
• Intercepts and interprets user interface events
• routes information to models and views

07-3

9

MVC vs MV

• Separating Model from View...
• ...is just good, basic object-oriented design

• usually not hard to achieve, with forethought

• Separating the Controller is a bit less clear-cut
• May be overkill in a small system.

• Often the Controller and the View are naturally closely
related

Both frequently use GUI Components, which the Model is unlikely to do.

• Model-View Pattern: MV
• Folds the Controller and the View together.

10

Implementation Note
• Model, View, and Controller are design concepts, not class

names
• Might be more than one class involved in each.
• The View might involve a number of different GUI

components
• Example: JFileChooser

• MVC might apply at multiple levels in a system
• A Controller might use a listbox to interact with a user.
• That listbox is part of the Controller
• However, the listbox itself has a Model and a View, and possibly a

Controller.

11

Model-View Interaction

• It's possible to have more than one viewer

• A viewer tells the model that it wants to be notified when
something interesting happens

• The model contains a list of all interested viewers

• When something happens (a cycle in the simulation has
occurred, for example), the model calls the notify() method
of each viewer
• Viewers can react however they like

• This illustrates the "observer pattern"
• used heavily in the Java user interface libraries, among other places

