Hashing

Searching

» Consider the problem of searching an array for a

given value

— If the array is not sorted, the search requires O(n) time
« If the value isn’t there, we need to search all n elements

« If the value is there, we search n/2 elements on average

— If the array is sorted, we can do a binary search

* A binary search requires O(log n) time

« About equally fast whether the element is found or not

— It doesn’t seem like we could do much better

« How about an O(1), that is, constant time search?

* We can do it if the array is organized in a particular way

Hashing

Suppose we were to come up with a “magic
function” that, given a value to search for, would
tell us exactly where in the array to look

— Ifit’s in that location, it’s in the array

— Ifit’s not in that location, it’s not in the array

This function would have no other purpose

If we look at the function’s inputs and outputs,
they probably won’t “make sense”

This function is called a hash function because it
“makes hash” of its inputs

Example (ideal) hash function

* Suppose our hash function

gave us the following values:
hashCode("apple") = 5
hashCode("watermelon") = 3
hashCode("grapes") = 8
hashCode("cantaloupe") = 7
hashCode("kiwi") = 0
hashCode("strawberry") = 9
hashCode("mango") = 6
hashCode("banana") = 2

0
1
2
3
4
5
6
7
8
9

Kiwi

banana

watermelon

apple

mango

cantaloupe

grapes

strawberry

Why hash tables?

* We don’t (usually) use ... key value
hash tables just to see if 141
something is there or 142 robin robin info
not—instead, we put 143 | sparrow | sparrow info
key/value pairs into the 144 [(2 | hawk info
table 145| seagull | seagull info

— We use a key to find a 146

place in the table

147 i i i
— The value holds the bluejay | bluejay info

information we are 148 owl owl info

actually interested in

Finding the hash function

* How can we come up with this magic function?
* In general, we cannot--there is no such magic
function ®
— In a few specific cases, where all the possible values are
known in advance, it has been possible to compute a
perfect hash function
* What is the next best thing?
— A perfect hash function would tell us exactly where to
look
— In general, the best we can do is a function that tells us
where to start looking!

Example imperfect hash function

* Suppose our hash function 0 Kiwi
gave us the following 1
values: 2
- hash("apple") = 5 3
hash("watermelon") = 3
hash("grapes") = 8 4
hash("cantaloupe") = 7 5 app|e
6
7
8
9

banana
watermelon

hash("kiwi") = 0
hash("strawberry") = 9 mango
hash(*mango”) = cantaloupe
hash("banana") =
grapes
strawberry

6
2

hash("honeydew") = 6

* Now what?

Collisions

* When two values hash to the same array location,
this is called a collision

* Collisions are normally treated as “first come, first
served”—the first value that hashes to the location
gets it

* We have to find something to do with the second
and subsequent values that hash to this same
location

Handling collisions

* What can we do when two different values attempt
to occupy the same place in an array?

Insertion, I

» Suppose you want to add

seagull to this hash table 141
— Solution #1: Sea?rch from there for an empty location . « Also suppose: 142 robin
« Can stop searching when we find the value or an empty location
+ Search must be end-around - hashCode(seagull) = 143 143 sparrow
— Solution #2: Use a second hash function - table[143] 1s not empty 144 hawk
« ...and a third, and a fourth, and a fifth, ... - table[143] != seagull 145| seagull
— Solution #3: Use the array location as the header of a - table[144] is not empty 146
linked list of values that hash to this location - table[144] != seagull
. . . 147 j
+ All these solutions work, provided: - table[145] is empty bluejay
— We use the same technique to add things to the array as + Therefore, put seagull at 148 owl
we use to search for things in the array . ?
location 145
9 10
Searching, I Searching, II
* Suppose you want to look up o » Suppose you want to look up
seagull in this hash table 141 COW in this hash table 141
+ Also suppose: 142 robin * Also suppose: 142 robin
- hashCode(seagull) = 143 143 - hashCode(cow) = 144 143
- table[143] is not empty sparrow - table[144] is not empty sparrow
- table[143] != seagull 1441 hawk - table[144] != cow 144 hawk
- table[144] is not empty 145| seagull - table[145] is not empty 145| seagull
- table[144] != seagull 146 - table[145] '= cow 146
- table[145] 1s not ernpty' 147 quejay - table[146] 1's empty 147 bluejay
- table[145] == seagull ! » If cow were in the table, we
148 owl 148 owl

* We found seagull at location
145

should have found it by now
* Therefore, it isn’t here

Insertion, II

» Suppose you want to add S
hawk to this hash table 141

+ Also suppose 1421 robin
- hashCode(hawk) = 143 143 sparrow
- table[143] is not empty 144 hawk
- table[143] !'= hawk 145 seagull
- table[144] is not empty 146
- table[144] == hawk -

e hawk is already in the table, 1471 bluejay

148 owl

so do nothing

Insertion, III

* Suppose:
— You want to add cardinal to 141
this hash table 142 robin
- hashCode(calen?\) = 147 143 sparrow
— The last location is 148 144 hawk
— 147 and 148 are occupied
. 1451 seagull
. SO{;m(in}:l tabl ircular; aft o
— Treat the table as circular; after -
148 comes 0 147| bluejay
— Hence, cardinal goes in 148 owl

location 0 (or 1, or 2, or ...)

Clustering

« One problem with the above technique is the tendency to
form “clusters”

« A cluster is a group of items not containing any open slots

« The bigger a cluster gets, the more likely it is that new
values will hash into the cluster, and make it ever bigger

 Clusters cause efficiency to degrade

< Here is a non-solution: instead of stepping one ahead, step n
locations ahead

— The clusters are still there, they’re just harder to see

— Unless n and the table size are mutually prime, some table locations
are never checked

Efficiency

» Hash tables are actually surprisingly efficient
Until the table is about 70% full, the number of

probes (places looked at in the table) is typically
only 2 or 3

Sophisticated mathematical analysis is required to
prove that the expected cost of inserting into a
hash table, or looking something up in the hash
table, is O(1)

» Even if the table is nearly full (leading to long
searches), efficiency is usually still quite high

Solution #2: Rehashing

In the event of a collision, another approach is to rehash:
compute another hash function
— Since we may need to rehash many times, we need an easily
computable sequence of functions
Simple example: in the case of hashing Strings, we might
take the previous hash code and add the length of the
String to it
— Probably better if the length of the string was not a component in
computing the original hash function
Possibly better yet: add the length of the String plus the
number of probes made so far
— Problem: are we sure we will look at every location in the array?
Rehashing is a fairly uncommon approach, and we won’t
pursue it any further here

Solution #3: Bucket hashing

*+ The previous .
solut_lons used open 141 °
hashing: all entries 142 bin e
went into a “flat” robin
(unstructured) array 143 |sparrow ’_’l seagull |‘|
+ Another solutionisto 1*#| hawk [e
make each array 145 d
location the header of 146 °
a linked list of values 147 [pjuejay |®
that hash to that
. 148 owl |e
location

The hashCode function

public int hashCode() is defined in Object

Like equals, the default implementation of
hashCode just uses the address of the object—
probably not what you want for your own objects
You can override hashCode for your own objects
As you might expect, String overrides hashCode
with a version appropriate for strings

Note that the supplied hashCode method does not

know the size of your array—you have to adjust
the returned int value yourself

Writing your own hashCode method

¢ A hashCode method must:

— Return a value that is (or can be converted to) a legal
array index

— Always return the same value for the same input
« It can’t use random numbers, or the time of day
— Return the same value for equal inputs
* Must be consistent with your equals method
« It does not need to return different values for
different inputs
* A good hashCode method should:
— Be efficient to compute
— Give a uniform distribution of array indices
— Not assign similar numbers to similar input values

Other considerations

 The hash table might fill up; we need to be
prepared for that
— Not a problem for a bucket hash, of course

* You cannot delete items from an open hash table

— This would create empty slots that might prevent you
from finding items that hash before the slot but end up
after it

— Again, not a problem for a bucket hash
* Generally speaking, hash tables work best when
the table size is a prime number

Hash tables in Java

Java provides two classes, Hashtable and
HashMap classes

Both are maps: they associate keys with values
Hashtable is synchronized; it can be accessed
safely from multiple threads

- Hashtable uses an open hash, and has a rehash method,
to increase the size of the table

HashMap is newer, faster, and usually better, but it
is not synchronized
- HashMap uses a bucket hash, and has a remove method

Hash table operations

» Both Hashtable and HashMap are in java.util

* Both have no-argument constructors, as well as
constructors that take an integer table size
* Both have methods:
- public Object put(Object key, Object value)
+ (Returns the previous value for this key, or null)
- public Object get(Object key)
- public void clear()
- public Set keySet()
« Dynamically reflects changes in the hash table
— ...and many others

The End

