
1

Hashing

2

Searching

• Consider the problem of searching an array for a
given value
– If the array is not sorted, the search requires O(n) time

• If the value isn’t there, we need to search all n elements

• If the value is there, we search n/2 elements on average

– If the array is sorted, we can do a binary search
• A binary search requires O(log n) time

• About equally fast whether the element is found or not

– It doesn’t seem like we could do much better
• How about an O(1), that is, constant time search?

• We can do it if the array is organized in a particular way

3

Hashing

• Suppose we were to come up with a “magic
function” that, given a value to search for, would
tell us exactly where in the array to look
– If it’s in that location, it’s in the array

– If it’s not in that location, it’s not in the array

• This function would have no other purpose

• If we look at the function’s inputs and outputs,
they probably won’t “make sense”

• This function is called a hash function because it
“makes hash” of its inputs

4

Example (ideal) hash function

• Suppose our hash function
gave us the following values:

hashCode("apple") = 5
hashCode("watermelon") = 3
hashCode("grapes") = 8
hashCode("cantaloupe") = 7
hashCode("kiwi") = 0
hashCode("strawberry") = 9
hashCode("mango") = 6
hashCode("banana") = 2

kiwi

banana
watermelon

apple
mango

cantaloupe
grapes

strawberry

0

1

2

3

4

5

6

7

8

9

2

5

Why hash tables?

• We don’t (usually) use
hash tables just to see if
something is there or
not—instead, we put
key/value pairs into the
table
– We use a key to find a

place in the table

– The value holds the
information we are
actually interested in

robin

sparrow

hawk

seagull

bluejay

owl

. . .

141

142

143

144

145

146

147

148

robin info

sparrow info

hawk info

seagull info

bluejay info

owl info

key value

6

Finding the hash function

• How can we come up with this magic function?
• In general, we cannot--there is no such magic

function 
– In a few specific cases, where all the possible values are

known in advance, it has been possible to compute a
perfect hash function

• What is the next best thing?
– A perfect hash function would tell us exactly where to

look
– In general, the best we can do is a function that tells us

where to start looking!

7

Example imperfect hash function

• Suppose our hash function
gave us the following
values:
– hash("apple") = 5

hash("watermelon") = 3
hash("grapes") = 8
hash("cantaloupe") = 7
hash("kiwi") = 0
hash("strawberry") = 9
hash("mango") = 6
hash("banana") = 2
hash("honeydew") = 6

kiwi

banana
watermelon

apple
mango

cantaloupe
grapes

strawberry

0

1

2

3

4

5

6

7

8

9
• Now what?

8

Collisions

• When two values hash to the same array location,
this is called a collision

• Collisions are normally treated as “first come, first
served”—the first value that hashes to the location
gets it

• We have to find something to do with the second
and subsequent values that hash to this same
location

3

9

Handling collisions

• What can we do when two different values attempt
to occupy the same place in an array?
– Solution #1: Search from there for an empty location

• Can stop searching when we find the value or an empty location
• Search must be end-around

– Solution #2: Use a second hash function
• ...and a third, and a fourth, and a fifth, ...

– Solution #3: Use the array location as the header of a
linked list of values that hash to this location

• All these solutions work, provided:
– We use the same technique to add things to the array as

we use to search for things in the array

10

Insertion, I

• Suppose you want to add
seagull to this hash table

• Also suppose:
– hashCode(seagull) = 143
– table[143] is not empty
– table[143] != seagull
– table[144] is not empty
– table[144] != seagull
– table[145] is empty

• Therefore, put seagull at
location 145

robin
sparrow
hawk

bluejay
owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull

11

Searching, I

• Suppose you want to look up
seagull in this hash table

• Also suppose:
– hashCode(seagull) = 143
– table[143] is not empty
– table[143] != seagull
– table[144] is not empty
– table[144] != seagull
– table[145] is not empty
– table[145] == seagull !

• We found seagull at location
145

robin
sparrow
hawk

bluejay
owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull

12

Searching, II

• Suppose you want to look up
cow in this hash table

• Also suppose:
– hashCode(cow) = 144
– table[144] is not empty
– table[144] != cow
– table[145] is not empty
– table[145] != cow
– table[146] is empty

• If cow were in the table, we
should have found it by now

• Therefore, it isn’t here

robin
sparrow
hawk

bluejay
owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull

4

13

Insertion, II

• Suppose you want to add
hawk to this hash table

• Also suppose
– hashCode(hawk) = 143
– table[143] is not empty
– table[143] != hawk
– table[144] is not empty
– table[144] == hawk

• hawk is already in the table,
so do nothing

robin
sparrow
hawk

seagull

bluejay
owl

. . .

141

142

143

144

145

146

147

148

. . .

14

Insertion, III

• Suppose:
– You want to add cardinal to

this hash table
– hashCode(cardinal) = 147
– The last location is 148

– 147 and 148 are occupied

• Solution:
– Treat the table as circular; after

148 comes 0

– Hence, cardinal goes in
location 0 (or 1, or 2, or ...)

robin
sparrow
hawk

seagull

bluejay
owl

. . .

141

142

143

144

145

146

147

148

15

Clustering

• One problem with the above technique is the tendency to
form “clusters”

• A cluster is a group of items not containing any open slots

• The bigger a cluster gets, the more likely it is that new
values will hash into the cluster, and make it ever bigger

• Clusters cause efficiency to degrade

• Here is a non-solution: instead of stepping one ahead, step n
locations ahead
– The clusters are still there, they’re just harder to see

– Unless n and the table size are mutually prime, some table locations
are never checked

16

Efficiency

• Hash tables are actually surprisingly efficient

• Until the table is about 70% full, the number of
probes (places looked at in the table) is typically
only 2 or 3

• Sophisticated mathematical analysis is required to
prove that the expected cost of inserting into a
hash table, or looking something up in the hash
table, is O(1)

• Even if the table is nearly full (leading to long
searches), efficiency is usually still quite high

5

17

Solution #2: Rehashing

• In the event of a collision, another approach is to rehash:
compute another hash function
– Since we may need to rehash many times, we need an easily

computable sequence of functions

• Simple example: in the case of hashing Strings, we might
take the previous hash code and add the length of the
String to it
– Probably better if the length of the string was not a component in

computing the original hash function

• Possibly better yet: add the length of the String plus the
number of probes made so far
– Problem: are we sure we will look at every location in the array?

• Rehashing is a fairly uncommon approach, and we won’t
pursue it any further here

18

Solution #3: Bucket hashing

• The previous
solutions used open
hashing: all entries
went into a “flat”
(unstructured) array

• Another solution is to
make each array
location the header of
a linked list of values
that hash to that
location

robin
sparrow
hawk

bluejay
owl

. . .

141

142

143

144

145

146

147

148

. . .

seagull

19

The hashCode function

• public int hashCode() is defined in Object
• Like equals, the default implementation of

hashCode just uses the address of the object—
probably not what you want for your own objects

• You can override hashCode for your own objects

• As you might expect, String overrides hashCode
with a version appropriate for strings

• Note that the supplied hashCode method does not
know the size of your array—you have to adjust
the returned int value yourself

20

Writing your own hashCode method
• A hashCode method must:

– Return a value that is (or can be converted to) a legal
array index

– Always return the same value for the same input
• It can’t use random numbers, or the time of day

– Return the same value for equal inputs
• Must be consistent with your equals method

• It does not need to return different values for
different inputs

• A good hashCode method should:
– Be efficient to compute
– Give a uniform distribution of array indices
– Not assign similar numbers to similar input values

6

21

Other considerations

• The hash table might fill up; we need to be
prepared for that
– Not a problem for a bucket hash, of course

• You cannot delete items from an open hash table
– This would create empty slots that might prevent you

from finding items that hash before the slot but end up
after it

– Again, not a problem for a bucket hash

• Generally speaking, hash tables work best when
the table size is a prime number

22

Hash tables in Java

• Java provides two classes, Hashtable and
HashMap classes

• Both are maps: they associate keys with values

• Hashtable is synchronized; it can be accessed
safely from multiple threads
– Hashtable uses an open hash, and has a rehash method,

to increase the size of the table

• HashMap is newer, faster, and usually better, but it
is not synchronized
– HashMap uses a bucket hash, and has a remove method

23

Hash table operations

• Both Hashtable and HashMap are in java.util
• Both have no-argument constructors, as well as

constructors that take an integer table size
• Both have methods:

– public Object put(Object key, Object value)
• (Returns the previous value for this key, or null)

– public Object get(Object key)
– public void clear()
– public Set keySet()

• Dynamically reflects changes in the hash table

– ...and many others

24

The End

