
08-1

1

CSC 143 Java

Events, Event Handlers, and Threads

2

Overview

• Topics
• Event-driven programming

• Events in Java

• Event Listeners

• Event Adapters

• Threads

• Inner Classes

3

Classic Data Processing

• Input specified as part of the program design
• Example: process bank account deposits

Repeated set of transactions

Each transaction consists of a deposit slip (transaction header) followed by 1 or
more checks to be deposited to the account

• Program expects input in required order
• Program structure mirrors input organization

while (more input) {

//read and process transaction header
//read and process individual checks

}

4

Event-Driven Programming
• Idea: program initializes itself then accepts events in whatever random

order they occur

• Kinds of events
• Mouse move/drag/click, Keyboard, Touch screen, Joystick, game controller

• Window resized or components changed

• Activity over network or file stream

• Timer interrupt
(can still think of this as processing an “input stream”, but point of view is basically
different)

• First demonstrated in the 1960s(!); major developments at Xerox
PARC in the 1970s (Alto workstation, Smalltalk)

• Available outside research community with Apple Macintosh (1984)

08-2

5

Java Events
• An event is represented by an event object

• AWT/Swing events are subclasses of AWTEvent. Some examples:
ActionEvent – button pressed

KeyEvent – keyboard input

MouseEvent – mouse move/drag/click/button press or release

• All user interface components generate events when appropriate

• Event objects contain information about the event
• User interface object that triggered the event

• Other information appropriate for the event. Examples:
ActionEvent – contents of button text generating event (if from a button)

MouseEvent – mouse coordinates of the event

• All in java.util.event – need to import this to handle events

6

Event Listeners
• Basic idea: any object that is interested in an event registers itself with

the component that can generate the event

• The object must implement the appropriate Interface
• ActionListener, KeyListener, MouseListener (buttons), MouseMotionListener

(move/drag), others …

• When the event occurs, the appropriate method of the object is called
• actionPerformed, keyPressed, keyReleased, keyTyped, mouseClicked,

MouseDragged, etc. etc. etc.
Reminder – because these are part of an Interface, you can't change their signatures.

• An event object describing the event is a parameter to the receiving method

7

Example: Mouse Clicks
public class Mouser extends JPanel implements MouseListener {

/** Constructor – register this object to listen for mouse events */

Mouser() {

super();

addMouseListener(this);

}

/** Process mouse click */

public void mouseClicked(MouseEvent e) {

System.out.println(“mouse click at x = ” + e.getX() + “ y = “ e.getY());

}

• Also must implement the other events in MouseListener (if not Mouser is abstract)

8

Example: Draw Button

• Idea: add a button to the graphical view of the polygon
application to redraw a polygon

• First, in the MainClass, add a JButton

08-3

9

Button/View Layout
• In the buildGUI method

// place a button at the bottom of the frame

JButton draw = new JButton("Draw polygon");

JPanel southPanel = new JPanel();

southPanel.add(draw);

southPanel.setBackground(Color.WHITE);

frame.add(southPanel, BorderLayout.SOUTH);

10

Handling Button Clicks

• Who should handle the draw button clicks?
• Not the PolygonModel object – shouldn’t know about views

• But need to catch the event and then call methods in the
PolygonModel to carry out the pause/resume

• One solution: create a listener object

• New class: PolygonController

• Code in MainClass
PolygonController controller= new PolygonController(model);

draw.addActionListener(controller);

11

Listener Object
public class PolygonController implements ActionListener {

// instance variables
PolygonModel model; // the model we are controlling

/** Constructor for objects of class PolygonController */
public PolygonController(PolygonModel model) {

this.model = model;
}

/** Process button clicks by creating a new polygon*/
public void actionPerformed(ActionEvent e) {

???
}

}

12

Event Adapter Classes

• Interfaces like MouseListener and WindowListener contain
many methods; often we only are interested in one or two

• Alternative to implementing the interface and having to
provide empty implementations for uninteresting methods –
adapter classes

• Java.awt.event includes an abstract class with empty
implementations of all required methods for each of the
event listener interfaces

KeyAdapter (for KeyListener), MouseAdapter (for MouseListener),
WindowAdapter (for WindowListener), etc.

• Extend and override only what you need to create a listener object

08-4

13

Threads and The AWT Event Thread

• Java supports "threads": apparently concurrently executing
streams of instructions.

• User programs have at least one thread running
• Not hard to create additional threads

• Can be tricky to coordinate multiple threads

• The Java system has several threads running all the time

• One important system thread: the AWT event dispatcher

• All AWT/Swing event handlers execute in this thread

• Consequence: your event handlers may be running
simultaneously with your application code

14

Another approach: anonymous class

• What we did
public class PolygonController implements ActionListener{

public void actionPerformed(ActionEvent e) {

if (model != null) {

model.createPolygon(width, height);

}

}

}

• Controller needs to know about the model, etc.

• Can be done within the MainClass where all of the information is
available

15

Towards a Solution: Inner Classes
• Java 1.1 and later allows classes to be nested

• Inner classes define a new scope nested in the containing class

• Inner classes can access instances variables and methods of the containing class

• Inner classes can be public, protected, or private

• Example: Point2D
• has two inner classes, named Float and Double

• Are public, so can be used outside of class Point2D, as Point2D.Float and
Point2D.Double

• Inner classes in event handling
• A class like class PolygonController implements ActionListener{...} can be a

private inner class: is only needed once, and only inside the containing class

16

Solution: Anonymous Inner Classes

• For the action listener, all we need to do is create one
instance of the inner class and add it as a mouse listener
• Doesn’t really need a name(!)

• Solution: create one instance of an anonymous inner class

• Warning!!! Ghastly syntax ahead. Here’s how to create a
new object of an anonymous inner class
new <classname> (<constructor parameters>) { <method overrides>

}

08-5

17

Anonymous class for the controller
public static void buildGUI() {

// build GUI code (JFrame, etc.)
// Create inner class instance to listen for mouse clicks

draw.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

model.createRandomPolygon(centerPanel.getWidth(),

centerPanel.getHeight());

}

});

// no need to have a top level class for the controller
} //end method buildGUI

18

Summary
• Event-driven programming

• Event objects

• Event listeners – anything that implements the relevant interface
• Must register with object generating events as a listener

• Listener objects – handle events by passing them along to other
objects

• Event adapter classes – implementations of event interfaces with
empty methods
• Extend and override only what you want

• Commonly used to create instances of anonymous inner classes that listen for
events

