
1

CSC 143

Making a copy of an object:
shallow and deep copy

2

Example
public class Car {

private String make;
private double weight;
public Car(String theMake, double theWeight) {

make = theMake;
weight = theWeight;

}
}

 Car c = new Car(“Ford”, 2000);
 Object diagram

 How to make a copy of c?

Car

make

weight 2000

c

String

“Ford”

3

An alias

Car

make

weight 2000

c

String

“Ford”

alias

 Car c = new Car(“Ford”, 2000);

 Car alias = c;

 Object diagram

 Not really a copy!

4

A shallow copy
 Car c = new Car(“Ford”, 2000);

 Car shallow = ??; // See code later

 Object diagram

Car

make

weight 2000

c

String

“Ford”

Car

make

weight 2000

shallow

The original Car object is
copied exactly as it appears. All of
the fields have the same values in
the copy as in the original. This is
why the “make” field in the copy
contains the same address as in the
original.
A shallow copy shares all of the
objects with the original beyond the
first level in the object diagram

5

A deep copy
 Car c = new Car(“Ford”, 2000);

 Car deep = ??; // See code later

 Object diagram:

Car

make

weight 2000

c

String

“Ford”

Car

make

weight 2000

deep

String

“Ford”

Original and copy
are totally distinct

6

Coding
public class Car {

private String make;
private double weight;
// many ways
// a copy constructor

// an instance method

// a factory method (static method)

}
Java also offers the clone method (but clunky!)

public Car(Car c) { //shallow
this.weight = c.weight;
this.make = c.make;

}

public Car(Car c) { // deep
this.weight = c.weight;
this.make = new String(c.make);

}

public Car shallowCopy() {
return new Car(this.weight,
this.make);

}

public Car deepCopy() {
return new Car(this.weight,
new String(this.make));

}

public static Car shallowCopy(Car c) {
return new Car(c.weight, c.make);

}

public static Car deepCopy(Car c) {
return new Car(c.weight, new

String(c.make));
}

7

How to choose?
 A deep copy requires more execution time

and memory

 Always return a deep copy if you want to be
sure that the original data can’t be changed
by a caller.

 Sometimes a shallow copy has the same
effect as a deep copy since some Java
classes are immutable.

8

Immutable classes
 Immutable class: a class whose instances CANNOT be modified once

created.

 The class doesn’t offer any method that would allow a client to modify an
instance of the class.

 The String class is immutable
 String s = new String(“abc”);

String r = s.toUpperCase();
// doesn’t modify s, but creates a new String whose content is “ABC”

 Color, wrapper classes (Double, Character, etc.), File, Font are other
examples of immutable classes (there are more). And of course you can
write your own immutable classes.

 In our Car example, the shallow copy behaves like a deep copy (meaning
that the original can’t be modified even when shallow copied).

s
String

“abc”

r
String

“ABC”

