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CSC 143 Java

Program Efficiency &

Introduction to Complexity Theory
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GREAT IDEAS IN COMPUTER 
SCIENCE

ANALYSIS OF ALGORITHMIC COMPLEXITY
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Overview

• Topics
• Measuring time and space used by algorithms

• Machine-independent measurements

• Costs of operations

• Comparing algorithms

• Asymptotic complexity – O( ) notation and complexity classes
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Comparing Algorithms

• Example: We’ve seen two different list implementations
• Dynamic expanding array

• Linked list

• Which is “better”?

• How do we measure?
• Stopwatch?  Why or why not?



14-2

5

Program Efficiency & Resources

• Goal: Find way to measure "resource" usage in a way that is 
independent of particular machines/implementations

• Resources
• Execution time

• Execution space

• Network bandwidth

• others

• We will focus on execution time
• Basic techniques/vocabulary apply to other resource measures
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Example

• What is the running time of the following method?
// Return the maximum value of the elements of an array of doubles 
public double max(double[ ] a) {

double max = a[0]; // why not max = 0?

for ( int k = 1; k < a.length; k++) {

if (a[k] > max) {

max = a[k];
}

}

return max;
}

• How do we analyze this?
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Analysis of Execution Time

1. First: describe the size of the problem in terms of one or 
more parameters

• For max, size of array makes sense

• Often size of data structure, but can be magnitude of some 
numeric parameter, etc.

2. Then, count the number of steps needed as a function of 
the problem size

• Need to define what a "step" is.
• First approximation: one simple statement

• More complex statements will be multiple steps
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Cost of operations: Constant Time Ops

• Constant-time operations: each take one abstract time “step”
• Simple variable declaration/initialization (double x = 0.0;)

• Assignment of numeric or reference values (var = value;)

• Arithmetic operation (+, -, *, /, %)

• Array subscripting (a[index])

• Simple conditional tests (x < y, p != null)

• Operator new itself (not including constructor cost)
Note: new takes significantly longer than simple arithmetic or assignment, but its 
cost is independent of the problem we’re trying to analyze

• Note: watch out for things like method calls or constructor 
invocations that look simple, but are expensive
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Cost of operations: Zero-time Ops

• Compiler can sometimes pay the whole cost of setting up 
operations
• Nothing left to do at runtime

• Variable declarations without initialization
double[ ] overdrafts;

• Variable declarations with compile-time constant initializers
static final int maxButtons = 3;

• Casts (of reference types, at least)
...  (Double) checkBalance
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Sequences of Statements

• Cost of
S1; S2; … Sn

is sum of the costs of S1 + S2 + … + Sn
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Conditional Statements
• The two branches of an if-statement might take different times.   What 

to do??
if (condition) {

S1;
} else {

S2;
}

• Hint: Depends on analysis goals
• "Worst case": the longest it could possibly take, under any circumstances
• "Average case": the expected or average number of steps
• "Best case": the shortest possible number of steps, under some special 

circumstance

• Generally, worst case is most important to analyze
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Analyzing Loops

• Basic analysis
1. Calculate cost of each iteration

2. Calculate number of iterations

3. Total cost is the product of these
Caution -- sometimes need to add up the costs differently if cost of each iteration 

is not roughly the same

• Nested loops
• Total cost is number of iterations or the outer loop times the cost 

of the inner loop

• same caution as above
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Method Calls
• Cost for calling a function is cost of...

cost of evaluating the arguments (constant or non-constant)
+ cost of actually calling the function (constant overhead)
+ cost of passing each parameter (normally constant time in Java for 

both numeric and reference values)
+ cost of executing the function body (constant or non-constant?)

System.out.print(this.lineNumber);
System.out.println("Answer is " + Math.sqrt(3.14159));

• Terminology note: "evaluating" and "passing" an argument 
are two different things!
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Exact Complexity Function

• Careful analysis of an algorithm leads to an algebraic 
formula

• The "exact complexity function" gives the number of steps as 
a function of the problem size

• What can we do with it:
• Predict running time in a particular case (given n, given type of 

computer)?
• Predict comparative running times for two different n (on same type 

of computer)?
• ***** Get a general feel for the potential performance of an algorithm
• ***** Compare predicted running time of two different algorithms for 

the same problem (given same n)
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A Graph is Worth A Bunch of Words

• Graphs are a good tool to illustrate, study, and compare 
complexity functions

• Fun math review for you
• How do you graph a function?

• What are the shapes of some common functions?  For example, 
ones mentioned in these slides or the textbook.
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Exercise
• Analyze the running time of 

printMultTable
• Pick the problem size

• Count the number of steps

// print triangular multiplication table

// with n rows

void printMultTable( int n) {

for ( int k=0; k <=n; k++) {

printRow(k);

}
}

// print row r with length r of a 

// multiplication table

void printRow( int r) {

for ( int k = 0; k <= r; k++) {

System.out.print( r * k + “ ”);

}

System.out.println( );

}
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Comparing Algorithms

• Suppose we analyze two algorithms and get these times 
(numbers of steps):
• Algorithm 1:  37n + 2n2 + 120

• Algorithm 2:  50n + 42

How do we compare these?  What really matters?

• Answer: In the long run, the thing that is most interesting is 
the cost as the problem size n gets large
• What are the costs for n=10, n=100; n=1,000; n=1,000,000?

• Computers are so fast that how long it takes to solve small problems 
is rarely of interest

18

Orders of Growth
• Examples:

N log2N 5N N log2N N2 2N

===============================================================

8 3 40 24 64 256

16 4 80 64 256 65536

32 5 160 160 1024 ~109

64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

10000 13 50000 105 108 ~103010
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Asymptotic Complexity

• Asymptotic: Behavior of complexity function as problem size 
gets large
• Only thing that really matters is higher-order term

• Can drop low order terms and constants

• The asymptotic complexity gives us a (partial) way to answer 
“which algorithm is more efficient”
• Algorithm 1:  37n + 2n2 + 120 is proportional to n2

• Algorithm 2:  50n + 42 is proportional to n

• Graphs of functions are handy tool for comparing asymptotic 
behavior
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Big-O Notation

• Definition: If f(n) and g(n) are two complexity functions, we 
say that

f(n) = O(g(n)) ( pronounced f(n) is O(g(n)) or is order g(n) )

if there is a constant c such that
f(n)  c • g(n)

for all sufficiently large n
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Exercises

• Prove that 5n+3 is O(n)

• Prove that 5n2 + 42n + 17 is O(n2)
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Implications

• The notation f(n) = O(g(n)) is not an equality

• Think of it as shorthand for
• “f(n) grows at most like g(n)”  or

• “f grows no faster than g”  or 

• “f is bounded by g”

• O( ) notation is a worst-case analysis
• Generally useful in practice

• Sometimes want average-case or expected-time analysis if worst-
case behavior is not typical (but often harder to analyze)
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Complexity Classes

• Several common complexity classes (problem size n)
• Constant time: O(k)   or  O(1)

• Logarithmic time: O(log n)    [Base doesn’t matter.  Why?]

• Linear time: O(n)

• “n log n” time: O(n log n)

• Quadratic time: O(n2)

• Cubic time: O(n3)
…

• Exponential time: O(kn)

• O(nk) is often called polynomial time
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Rule of Thumb
• If the algorithm has polynomial time or better: practical

• typical pattern: examining all data, a fixed number of times

• If the algorithm has exponential time: impractical
• typical pattern: examine all combinations of data

• What to do if the algorithm is exponential?
• Try to find a different algorithm
• Some problems can be proved not to have a polynomial solution
• Other problems don't have known polynomial solutions, despite 

years of study and effort.
• Sometimes you settle for an approximation:

The correct answer most of the time, or
An almost-correct answer all of the time
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Big-O Arithmetic

• For most commonly occurring functions, comparison can be 
enormously simplified with a few simple rules of thumb.

• Memorize complexity classes in order from smallest to 
largest:  O(1),  O(log n),  O(n),  O(n log n),  O(n2), etc.

• Ignore constant factors
300n + 5n4 + 6 + 2n = O(n + n4 + 2n)

• Ignore all but highest order term
O(n + n4 + 2n) = O(2n)
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Analyzing List Operations (1)

• We can use O( ) notation to compare the costs of different 
list implementations

• Operation                         Dynamic Array          Linked List
• Construct empty list

• Size of the list

• isEmpty

• clear
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Analyzing List Operations (2)

• Operation                             Dynamic Array          Linked List
• Add item to end of list

• Locate item (contains, indexOf)

• Add or remove item once it
has been located
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Wait!  Isn’t this totally bogus??

• Write better code!!
• More clever hacking in the inner loops

(assembly language, special-purpose hardware in extreme cases)

• Moore’s law: Speeds double every 18 months
• Wait and buy a faster computer in a year or two!

• But …
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How long is a Computer-Day?
• If a program needs f(n) microseconds to solve some problem, what is 

the largest single problem it can solve in one full day?
• One day = 1,000,000*24*60*60 = 106*24*36*102 = 8.64 * 1010

microseconds.
• To calculate, set f(n) = 8.64 * 1010 and solve for n in each case

f(n) n such that f(n) = one day
-----------------------
n 8.64 * 1010 ≈ 1011

5n 1.73 * 1010 ≈ 1010

n log2n 2.75 * 109 ≈ 109

n2 2.94 * 105 ≈ 105

n3 4.42 * 103 ≈ 103
2n 36

The size of the problem that 
can be solved in one day 

becomes smaller and smaller
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Speed Up The Computer by 1,000,000 = 106

• Suppose technology advances so that a future computer is 1,000,000 
times faster than today's.

• In one day there are now = 8.64*1010*106 ticks available
• To calculate, set f(n) = 8.64*1016 and solve for n in each case

f(n) original n for one day  new n for one day

--------------------------------------------------
n 8.64 * 1010 8.64 x 1016

5n 1.73 * 1010 1.73 x 1016 

n log2n 2.75 * 109 etc.
n2 2.94 * 105

n3 4.42 * 103 

2n 36
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How Much Does 1,000,000-faster Buy?

• Divide the new max n by the old max n, to see how much more we can do in 
a day

f(n) n for 1 day   new n for 1 day

-------------------------------------------------

n 8.64 x 1010 8.64 x 1016 = million times larger

5n 1.73 x 1010 1.73 x 1016 = million times larger

n log2n  2.75 x 109 1.71 x 1015 = 600,000 times larger

n2 2.94 x 105 2.94 x 108 = 1,000 times larger

n3 4.42 x 103 4.42 x 105 = 100 times larger!

2n 36 56 = 1.55 times larger!
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Practical Advice For Speed Lovers

• First pick the right algorithm and data structure
• Implement it carefully, insuring correctness

• Then optimize for speed – but only where it matters
Constants do matter in the real world

Clever coding can speed things up, but result can be harder to read, modify

• Current state-of-the-art approach: Use measurement tools to 
find hotspots, then tweak those spots.

“Premature optimization is the root of all evil” – Donald Knuth
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"It is easier to make a 
correct program efficient 

than to make an efficient 
program correct"

-- Edsgar Dijkstra
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Summary

• Analyze algorithm sufficiently to determine complexity

• Compare algorithms by comparing asymptotic complexity

• For large problems an asymptotically faster algorithm will 
always trump clever coding tricks

“Premature optimization is the root of all evil”

– Donald Knuth
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Computer Science Note

• Algorithmic complexity theory is one of the key intellectual 
contributions of Computer Science

• Typical problems
• What is the worst/average/best-case performance of an algorithm?

• What is the best complexity bound for all algorithms that solve a 
particular problem?

• Interesting and (in many cases) complex, sophisticated math
• Probabilistic and statistical as well as discrete

• Still some key open problems
• Most notorious:  P ?= NP


