CSC 143 Java

Program Efficiency & Introduction to Complexity Theory

GREAT IDEAS IN COMPUTER SCIENCE

ANALYSIS OF ALGORITHMIC COMPLEXITY

2

4

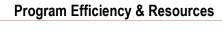
Overview

- Topics
 - Measuring time and space used by algorithms
 - Machine-independent measurements
 - Costs of operations
 - Comparing algorithms
 - Asymptotic complexity O() notation and complexity classes

Comparing Algorithms

- Example: We've seen two different list implementations
 - Dynamic expanding array
 - Linked list
- Which is "better"?
- How do we measure?
- Stopwatch? Why or why not?

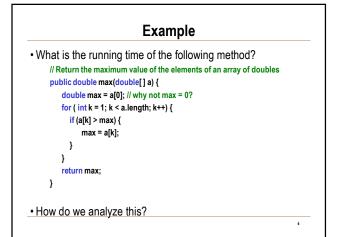
3



- Goal: Find way to measure "resource" usage in a way that is independent of particular machines/implementations
- Resources
 - Execution time
 - Execution space
 - Network bandwidth
 - others
- We will focus on execution time
 - Basic techniques/vocabulary apply to other resource measures

5

1



Analysis of Execution Time

- 1. First: describe the *size* of the problem in terms of one or more parameters
 - For max, size of array makes sense
 - Often size of data structure, but can be magnitude of some numeric parameter, etc.
- 2. Then, count the number of steps needed as a function of the problem size
- Need to define what a "step" is.
- First approximation: one simple statement
- More complex statements will be multiple steps

Cost of operations: Constant Time Ops

- · Constant-time operations: each take one abstract time "step"
 - Simple variable declaration/initialization (double x = 0.0;)
 - Assignment of numeric or reference values (var = value;)
 - Arithmetic operation (+, -, *, /, %)
 - Array subscripting (a[index])
 - Simple conditional tests (x < y, p != null)
 - Operator new itself (not including constructor cost) Note: new takes significantly longer than simple arithmetic or assignment, but its cost is independent of the problem we're trying to analyze
- Note: watch out for things like method calls or constructor invocations that look simple, but are expensive

Cost of operations: Zero-time Ops

- · Compiler can sometimes pay the whole cost of setting up operations
 - Nothing left to do at runtime
- Variable declarations without initialization double[] overdrafts;
- · Variable declarations with compile-time constant initializers static final int maxButtons = 3;
- · Casts (of reference types, at least)
 - ... (Double) checkBalance

Sequences of Statements

10

12

Cost of

9

11

S1; S2; ... Sn is sum of the costs of S1 + S2 + ... + Sn

Conditional Statements

- The two branches of an if-statement might take different times. What to do??
 - if (condition) {
 - S1; } else {
 - S2;
- } • Hint: Depends on analysis goals
 - · "Worst case": the longest it could possibly take, under any circumstances
 - "Average case": the expected or average number of steps
 - "Best case": the shortest possible number of steps, under some special circumstance
- · Generally, worst case is most important to analyze

Analyzing Loops

- Basic analysis
 - 1. Calculate cost of each iteration
 - 2. Calculate number of iterations
 - 3. Total cost is the product of these Caution -- sometimes need to add up the costs differently if cost of each iteration is not roughly the same
- Nested loops
- Total cost is number of iterations or the outer loop times the cost of the inner loop
- same caution as above

Method Calls

Cost for calling a function is cost of...
 cost of evaluating the arguments (constant or non-constant)

- + cost of actually calling the function (constant overhead)
- + cost of passing each parameter (normally constant time in Java for both numeric and reference values)
- + cost of executing the function body (constant or non-constant?)

System.out.print(this.lineNumber); System.out.println("Answer is " + Math.sqrt(3.14159));

• Terminology note: "evaluating" and "passing" an argument are two different things!

13

Exact Complexity Function

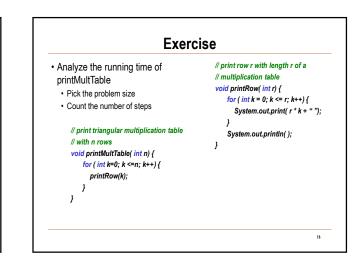
Careful analysis of an algorithm leads to an algebraic formula

- The "exact complexity function" gives the number of steps as a function of the problem size
- What can we do with it:
- Predict running time in a particular case (given n, given type of computer)?
- Predict comparative running times for two different n (on same type of computer)?
- ***** Get a general feel for the potential performance of an algorithm

14

• ***** Compare predicted running time of two different algorithms for the same problem (given same n)

<section-header><text><text><list-item><list-item><list-item><list-item>



14-4



- Suppose we analyze two algorithms and get these times (numbers of steps):
 - Algorithm 1: 37n + 2n² + 120
 - Algorithm 2: 50n + 42
- How do we compare these? What really matters?
- Answer: In the long run, the thing that is most interesting is the cost as the problem size n gets large
 - What are the costs for n=10, n=100; n=1,000; n=1,000,000?
 - Computers are so fast that how long it takes to solve small problems is rarely of interest

Orders of Growth					
Examples:					
N	$\log_2 N$	5N	N log ₂ N	N^2	2 ^N
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	~109
64	6	320	384	4096	~10 ¹⁹
128	7	640	896	16384	~10 ³⁸
256	8	1280	2048	65536	~10 ⁷⁶
10000	13	50000	105	108	~10 ³⁰¹⁰

Asymptotic Complexity

- Asymptotic: Behavior of complexity function as problem size gets large
 - Only thing that really matters is higher-order term
 - Can drop low order terms and constants
- The asymptotic complexity gives us a (partial) way to answer "which algorithm is more efficient"
 - Algorithm 1: 37n + 2n² + 120 is proportional to n²
 - Algorithm 2: 50n + 42 is proportional to n
- Graphs of functions are handy tool for comparing asymptotic behavior

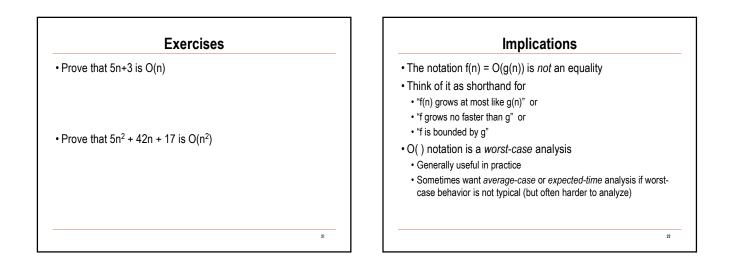
17

Big-O Notation

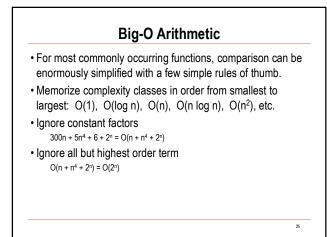
- Definition: If f(n) and g(n) are two complexity functions, we say that
 - f(n) = O(g(n)) (pronounced f(n) is O(g(n)) or is order g(n))
- if there is a constant c such that

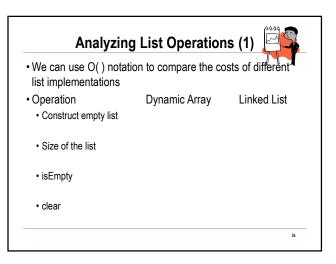
 $f(n) \leq c \boldsymbol{\cdot} g(n)$

for all sufficiently large n

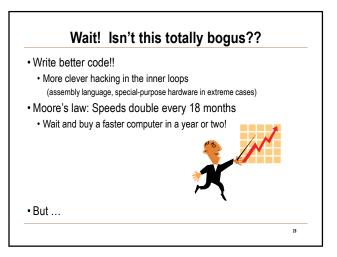


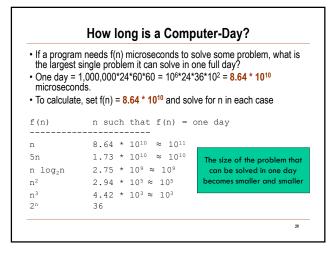
Complexity Classes	Rule of Thumb		
 Several common complexity classes (problem size n) Constant time: O(k) or O(1) Logarithmic time: O(log n) [Base doesn't matter. Why?] Linear time: O(n) "n log n" time: O(n log n) Quadratic time: O(n²) Cubic time: O(n³) Exponential time: O(kⁿ) O(n^k) is often called <i>polynomial time</i> 	 If the algorithm has polynomial time or better: practical typical pattern: examining all data, a fixed number of times If the algorithm has exponential time: impractical typical pattern: examine <i>all combinations</i> of data What to do if the algorithm is exponential? Try to find a different algorithm Some problems can be proved not to have a polynomial solution Other problems don't have known polynomial solutions, despite years of study and effort. Sometimes you settle for an approximation: The correct answer most of the time, or An almost-correct answer all of the time 		

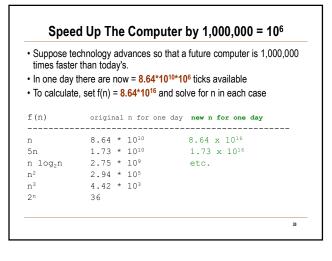




Analyzing List Operations (2)				
Operation Add item to end of list	Dynamic Array	Linked List		
Locate item (contains, ind	exOf)			
Add or remove item once has been located	it			
		27		

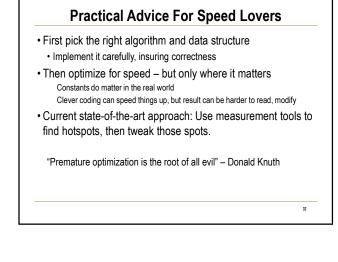


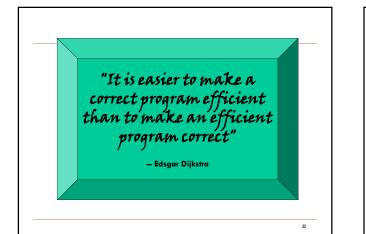


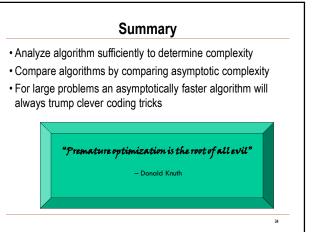


How Much Does 1,000,000-faster Buy?

f(n)	n for 1 day	new n for 1 day
n	8.64 x 10 ¹⁰	8.64×10^{16} = million times large:
5n	1.73 x 10 ¹⁰	1.73×10^{16} = million times larger
n log ₂ n	2.75 x 10°	$1.71 \times 10^{15} = 600,000 \text{ times larges}$
n²	2.94 x 10 ⁵	$2.94 \times 10^8 = 1,000 \text{ times larger}$
n ³	4.42 x 10 ³	$4.42 \times 10^5 = 100 \text{ times larger!}$
2 ⁿ	36	56 = 1.55 times larger!







Computer Science Note

- Algorithmic complexity theory is one of the key intellectual contributions of Computer Science
- Typical problems
 - What is the worst/average/best-case performance of an algorithm?
- What is the best complexity bound for all algorithms that solve a particular problem?
- Interesting and (in many cases) complex, sophisticated math
 Probabilistic and statistical as well as discrete
- Still some key open problems
- Most notorious: P ?= NP