
11-1

1

CSC 143 Java

Collections

2

Collections

• Most programs need to store and access collections of data

• Collections are worth studying because...
• They are widely useful in programming

• They provide examples of the OO approach to design and
implementation
identify common patterns

regularize interface to increase commonality

factor them out into common interfaces, abstract classes

• Their implementation will raise issues previously swept under the
rug: efficiency

3

Goals for Next Several Lectures

• Survey different kinds of collections, focusing on their
interfaces
• Lists, sets, maps

• Iterators over collections

• Then look at different possible implementations
• Arrays, linked lists, hash tables, trees

• Mix-and-match implementations to interfaces

• Compare implementations for efficiency
• How do we measure efficiency?

• Implementation tradeoffs

4

Java Collection Interfaces

• Key interfaces in Java :
• Collection – a collection of objects

• List extends Collection – ordered sequence of objects (first, second,
third, …); duplicates allowed

• Set extends Collection – unordered collection of objects; duplicates
suppressed

• Map – collection of <key, value> pairs; each key may appear only
once in the collection; item lookup is via key values
(Think of pairs like <word, definition>, <id#, student record>,
<book ISBN number, book catalog description>, etc.)

• Iterator – provides element-by-element access to collection items

11-2

5

Java 2 Collection Implementations

• Main concrete implementations of these interfaces:

• ArrayList implements List (using arrays underneath)

• LinkedList implements List (using linked lists)

• HashSet implements Set (using hash tables)

• TreeSet implements Set (using trees)

• HashMap implements Map (using hash tables)
• TreeMap implements Map (using trees)

6

Java Generics
• Before Java 5.0, the static type of the elements of a Collection or of the keys and

values of a Map was Object

• Yields unattractive code
ArrayList a = new ArrayList();

a.add("First element"); // a string

String s = (String) a.get(0); // need a cast

• In Java 5.0, a Collection (or a Map) specifies the static type of its elements

• Better code
ArrayList<String> a = new ArrayList<String>();

a.add("First element");

String s = a.get(0); // no cast

• With Generics, the compiler can do some type checking.
ArrayList<String> a = new ArrayList<String>();

a.add(new Oval()); // doesn’t compile

7

Java Boxing
• Before Java 5.0, a primitive type could not be put directly in a collection

ArrayList a = new ArrayList();

int i = 3;

a.add(i);// NO!

a.add(new Integer(i)); // OK

• The distinction between primitive and reference types is still present in

Java 5.0. But, the details are hidden from the programmer.
ArrayList<Integer> a = new ArrayList<Integer>();

int i = 3;

a.add(i);// OK: i is boxed into an Integer object

int k = a.get(0); // OK: the arraylist element is unboxed

8

interface Collection<E>
• Basic methods available on most collections (E is the

generic type of the collection):
int size() – # of items currently in the collection
boolean isEmpty() – (size() == 0)
boolean contains(Object o) – true if o is in the collection

[how to compare o with the elements already in the collection?]
boolean add(E o) – ensure that o is in the collection, possibly adding it;

return true if collection altered; false if not. [leaves a lot unspecified….]
boolean addAll(Collection<E> other) – add all elements in the other collection
(actually not the exact signature…)
boolean remove(Object o) – remove one o from the collection, if present;

return true if something was actually removed
void clear() – remove all elements
Iterator<E> iterator() – return an iterator object for this collection

11-3

9

interface Iterator<E>

• Provides access to elements of any collection one-by-one,

even if the collection has no natural ordering (sets, maps)
boolean hasNext() – true if the iteration has more elements

E next() – next element in the iteration; precondition: hasNext() == true

void remove() – remove from the underlying collection the element last returned

by the iteration. [Optional; some collections don’t support this.]

10

Standard Iterator<E> Loop Pattern

Collection<E> c = …;

Iterator<E> iter = c.iterator();

while (iter.hasNext()) {

E elem = iter.next();

// do something with elem

}

• Note similarity to generic file/stream processing loop:
open stream -- perhaps from file

while not at end of stream {
read/write next data item, do something with it

}

11

Iterators vs. Counter Loops

• A related pattern is the counting loop:
ArrayList<E> list = …;

for (int i = 0; i < list.size(); i ++) {

E elem = list.get(i);

// do something with elem

}

• The iterator pattern is generally preferable because it...
• works over any collection, even those without a get(int) operation

• encapsulates the tedious details of iterating, indexing

12

Still more abstraction: for(:)
• Can even use an iterator without asking for one

ArrayList<E> list = …;

for (E elem : list) {

// do something with elem

}

• CSC143 style rule: use the iterator pattern (with an actual iterator or in the
form of the above for loop). It is a good illustration of the concept of
abstraction.
• Unless there are compelling reasons to use a counting loop (e.g. initialization)

• Note: the for(:) statement works for arrays as well (anything that is Iterable)
int a = new int [10];

for (int k : a) { // do something with k }

11-4

13

Lists as Collections

• In some collections, there is no natural order
• Leaves on a tree, grocery items in a bag, grains of sand on the

beach

• In other collections, the order of elements is natural and
important
• Chapters of a book, floors in a building, people camping out to buy

Starwars tickets

• Lists are collections where the elements have an order
• Each element has a definite position (first, second, third, …)

• positions are generally numbered from 0

14

interface List<E> extends Collection<E>

• Following are included in all Java Lists (and some other
Collection types):

E get(int pos) – return element at position pos

boolean set(int pos, E elem) – store elem at position pos

boolean add(int pos, E elem) – store elem at position pos; slide elements
at position pos to size()-1 up one position to the right

E remove(int pos) – remove item at given position; shift remaining
elements to the left to fill the gap; return the removed element

int indexOf(Object o) – return position of first occurrence of o in the list, or
-1 if not found

• Precondition for most of these is 0 <= pos < size()

15

interface ListIterator<E> extends Iterator<E>

• The iterator() method for a List returns an instance of
ListIterator
• Can also send listIterator(int pos) to get a ListIterator starting at the

given position in the list

• ListIterator returns objects in the list collection in the order
they appear in the collection

• Supports additional methods:
hasPrevious(), previous() – for iterating backwards through a list

set(E o) – to replace the current element with something else

add(E o) – to insert an element after the current element

16

List Implementations

• ArrayList<E> – internal data structure is an array
• Fast iterating

• Fast access to individual elements (using get(int), set(int, E))

• Slow add/remove, particularly in the middle of the list

• LinkedList<E> – internal data structure is a linked list
• Fast iterating

• Slow access to individual elements (using get(int), set(int, E))

• Fast add/remove, even in the middle of the list if via iterator

• A bit later in the course we’ll dissect both forms of
implementation

11-5

17

interface Set<E> extends Collection<E>
• As in math, a Set is an unordered collection, with no

duplicate elements
• attempting to add an element already in the set does not change the

set
• Interface is same as Collection, but refines the specifications

• The specs are in the form of comments
• interface SortedSet<E> extends Set<E>

• Same as Set, but iterators will always return set elements in a
specified order

• Requires that elements be Comparable: implement the
compareTo(E o) method, returning a negative, 0, or positive
number to mean <=, ==, or >=, respectively
or that elements be comparable with a Comparator.

18

interface Map<K, V>
• Collections of <key, value> pairs

• keys are unique, but values need not be

• Doesn't extend Collection, but does provide similar methods
size(), isEmpty(), clear()

• Basic methods for dealing with <key, value> pairs:
V put(K key, V value) – add <key, value> to the map, replacing

the previous <key, value> mapping if one exists
void putAll(Map<K, V> other) – put all <key, value> pairs from other into this map
V get(K key) – return the value associated with the given key, or null

if key is not present
V remove(K key) – remove any mapping for the given key
boolean containsKey(Object key) – true if key appears in a <key, value> pair
boolean containsValue(Object value) – true if value appears in a <key, value>

19

Maps and Iteration
• Map provides methods to view contents of a map as a collection:

Set<K> keySet() – return a Set whose elements are the keys of this map

Collection<V> values() – return a Collection whose elements are the values

contained in this map

[why is one a set and the other a collection?]

• To iterate through the keys or values or both, grab one of these
collections, and then iterate through that

Map<K, V> map = …;

Set<K> keys = map.keySet();

for (K key : keys) {

V value = map.get(key);

// do something with key and value

}

20

interface SortedMap<K, V> extends Map

• SortedMap can be used for maps where we want to store
key/value pairs in order of their keys
• Requires keys to be Comparable, using compareTo, or comparable

with a Comparator.

• Sorting affects the order in which keys and values are
iterated through
• keySet() returns a SortedSet<K>

• values() returns an ordered Collection<V>

11-6

21

Preview of Coming Attractions

1. Study ways to implement these interfaces
• Array-based vs. link-list-based vs. hash-table-based vs. tree-

based

2. Compare implementations
• What does it mean to say one implementation is “faster” than

another?

• Basic complexity theory – O() notation

3. Use these and other data structures in our programming

