
1

1

CSC 143

Binary Search Trees

2

Costliness of contains

• Review: in a binary tree, contains is O(N)

• contains may be a frequent operation in an application

• Can we do better than O(N)?

• Turn to list searching for inspiration...
• Why was binary search so much better than linear search?

• Can we apply the same idea to trees?

3

Binary Search Trees

• Idea: order the nodes in the tree so that, given that a node
contains a value v,
• All nodes in its left subtree contain values < v

• All nodes in its right subtree contain values > v

• A binary tree with these properties is called a binary search
tree (BST)

4

Examples

• Are these are binary search trees? Why or why not?

• Tree on the left: yes, tree on the right: no (since 7 < 8)

9

4

2 7

3 6 81

12

15

14

9

8

2 7

3 5 61

12

15

14

2

5

Implementing a Set with a BST

• Can exploit properties of BSTs to have fast, divide-and-
conquer implementations of Set's add and contains
operations
• TreeSet!

• A TreeSet can be represented by a pointer to the root node
of a binary search tree, or null of no elements yet

public class SimpleTreeSet implements Set {

private BTNode root; // root node, or null if none

public SimpleTreeSet() { this.root = null; }
// size as for BinTree

…

}

6

contains for a BST

• Original contains had to search both subtrees
• Like linear search

• With BSTs, can only search one subtree!
• All small elements to the left, all large elements to the right

• Search either left or right subtree, based on comparison between
elem and value at root of tree

• Like binary search

7

Code for contains (in TreeSet)
/** Return whether elem is in set */
/** Type E must implement Comparable */
public boolean contains(E elem) {

return subtreeContains(root, elem);
}
// Return whether elem is in (sub-)tree with root n
private boolean subtreeContains(BTNode n, E elem) {

if (n == null) {
return false;

} else {
int comp = elem.compareTo(n.item);
if (comp == 0) { return true; } // found it!
else if (comp < 0) { return subtreeContains(n.left, elem); } // search left
else /* comp > 0 */ { return subtreeContains(n. right, elem); } // search right

}
}

8

Examples

9

4

2 7

3 6 81

12

15

14

contains(6)

root
9

4

2 7

3 6 81

12

15

14

contains(10)

root

3

9

Cost of BST contains

• Work done at each node: O(1)

• Number of nodes visited (depth of recursion): O(log N) if the
tree is balanced (= for any node, the difference in height
between the left and right subtrees is at most 1).
It could be O(N) is the tree looks like a linked list!

• Total cost: O(log N) with a balanced tree

10

add

• Must preserve BST invariant: insert new element in correct
place in BST

• Two base cases
• Tree is empty: create new node which becomes the root of the tree

• If node contains the value, found it; suppress duplicate add

• Recursive case
• Compare value to current node’s value

• If value < current node's value, add to left subtree recursively

• Otherwise, add to right subtree recursively

11

Example

• Add 8, 10, 5, 1, 7, 11 to an initially empty BST, in that order:

12

Example (2)

• What if we change the order in which the numbers are
added?

• Add 1, 5, 7, 8, 10, 11 to a BST, in that order (following the
algorithm):

4

13

Code for add (in TreeSet)
/** Ensure that elem is in the set. Return true if elem was added, false otherwise. */
public boolean add(E elem) {

try {
BTNode newRoot = addToSubtree(root, elem); // add elem to tree
root = newRoot; // update root to point to new root node
return true; // return true (tree changed)

} catch (DuplicateAdded e) {
// detected a duplicate addition
return false; // return false (tree unchanged)

}
}
/** Add elem to tree rooted at n. Return (possibly new) tree containing elem, or throw
DuplicateAdded if elem already was in tree */
private BTNode addToSubtree(BTNode n, E elem) throws DuplicateAdded {

… }

14

Code for addToSubtree
/** Add elem to tree rooted at n. Return (possibly new) tree containing elem, or throw
DuplicateAdded if elem already was in tree */
private BTNode addToSubtree(BTNode n, E elem) throws DuplicateAdded {

if (n == null) { return new BTNode(elem, null, null); } // adding to empty tree
int comp = elem.compareTo(n.item);
if (comp == 0) { throw new DuplicateAdded(); } // elem already in tree
if (comp < 0) { // add to left subtree

BTNode newSubtree = addToSubtree(n.left, elem);
n.left = newSubtree; // update left subtree

} else /* comp > 0 */ { // add to right subtree
BTNode newSubtree = addToSubtree(n.right, elem);
n.right = newSubtree; // update right subtree

}
return n; // this tree has been modified to contain elem

}

15

Cost of add

• Cost at each node: O(1) (or O(cost of compareTo))

• How many recursive calls?
• Proportional to height of tree

• Best case? O(log N) if adding a new element to a balanced tree

• Worst case? O(N) if adding a new element to tree that looks like a
linked list.

16

A Challenge: iterator

• How to return an iterator that traverses the sorted set in
order?
• Need to iterate through the items in the BST, from smallest to

largest

• Problem: how to keep track of position in tree where iteration
is currently suspended
• Need to be able to implement next(), which advances to the correct

next node in the tree

• Solution: keep track of a path from the root to the current
node
• Still some tricky code to find the correct next node in the tree

5

17

Another Challenge: remove

• Algorithm: find the node containing the element value being
removed, and remove that node from the tree

• Removing a leaf node is easy: replace with an empty tree
• Removing a node with only one non-empty subtree is easy:

replace with that subtree

• How to remove a node that has two non-empty subtrees?
• Need to pick a new element to be the new root node, and adjust at

least one of the subtrees

• E.g., remove the largest element of the left subtree (will be one of
the easy cases described above), make that the new root

18

Analysis of Binary Search Tree Operations

• Cost of operations is proportional to height of tree

• Best case: tree is balanced
• Depth of all leaf nodes is roughly the same
• Height of a balanced tree with n nodes is ~log2 n

• If tree is unbalanced, height can be as bad as the number of
nodes in the tree
• Tree becomes just a linear list

19

Summary

• A binary search tree is a good general implementation of a
set, if the elements can be ordered
• Both contains and add benefit from divide-and-conquer strategy

• No sliding needed for add

• Good properties depend on the tree being roughly balanced

• Open issues (or, why take a data structures course?)
• How are other operations implemented (e.g. iterator, remove)?

• Can you keep the tree balanced as items are added and removed?

