CSC 143 Java

List Implementation via Arrays

Implementing a List in Java

+ Two implementation approaches are most commonly used for simple
lists:
+ List via Arrays
+ Linked list
+ Java Interface List<E>
+ concrete classes ArrayList, LinkedList
+ same methods, different internals
+ Listin turn extends (implements) Collection<E>
+ Our current activities:
+ Lectures on listimplementations, in gruesome detail
MyArrayList is a class we develop as an example
+ Projects in which lists are used

List<E> Interface (review)

int size()
boolean isEmpty()
boolean add(E o)

boolean addAll(Collection<E> other) // Not exactly the signature, but...

void clear()

E get(int pos)

boolean set(int pos, E 0)
int indexOf(Object o)
boolean contains(Object o)
E remove(int pos)

boolean remove(Object o)
boolean add(int pos, E o)
Iterator<E> iterator()

Just an lllusion?

* Key concept: external view (the abstraction visible to
clients) vs. internal view (the implementation)
* MyArrayList may present an illusion to its clients
+ Appears to be a simple, unbounded list of elements
+ Actually may be a complicated internal structure
* The programmer as illusionist...

+ This is what abstraction is all about

Using an Array to Implement a List

* Idea: store the list elements in an array instance variable
Il Simple version of ArrayList for CSC143 lecture example
public class MyArrayList<E> implements List<E> {
[** variable to hold all elements of the list*/ elements
private E[] elements;

Obiject]]
) FEEEEER
*Issues:

+ How big to make the array?

+ Algorithms for adding and deleting elements (add and remove
methods)

+ Later: performance analysis of the algorithms

Space Management: Size vs. Capacity

* Idea: allocate extra space in the array,
+ possibly more than is actually needed at a given time
« size: the number of elements in the list, from the client's view
« capacity: the length of the array (the maximum size)
+ invariant: 0 <= size <= capacity

+ When list object created, create an array of some initial
maximum capacity

+ What happens if we try to add more elements than the initial
capacity? see later...

List Representation

public class MyArrayList<E> implements List<E> {
Il instance variables
private E[] el I el stored in el Elems-1]
private int numElems; Il size: # of elements currently in the list
Il capacity ?? Why no capacity variable??

Il default capacity
private static final int DEFAULT_CAPACITY = 10;

}

Review: what is the “static final"?

Constructors

+ We'll provide two constructors:
[* Construct new list with specified capacity */
public MyArrayList(int capacity) {
this.elements = (E[]) new Object[capacity]; // new E[capacity] doesn’t work!
this.numElems = 0;

}

[** Construct new list with default capacity */

public MyArrayList() {
this(DEFAULT_CAPACITY);

}

* Review: this(...)
means what?
can be used where?

12-2

size, isEmpty: Signatures

* size:
[** Return size of this list */
publicint size() {

}

*isEmpty:
[** Return whether the list is empty (has no elements) */
public boolean isEmpty() {

size, isEmpty: Code

* size:
[** Return size of this list */
publicint size() {
return this.numElems;

*isEmpty:
[** Return whether the list is empty (has no elements) */
public boolean isEmpty() {
return this.size() == 0; //OR return this.numElems == 0;
}
+ Each choice has pros and cons: what are they?

Method add: simple version

* Assuming there is unused capacity ...
[** Add object o to the end of this list.
@return true if the object was added successfully.
This implementation always returns true. */
public boolean add(E o) {

plelelglelelel7]
VA G A G &

~

[plzlzlzlelglely]
e

return true;

}

Method add: simple version

+ Assuming there is unused capacity ...
[** Add object o to the end of this list
@return true, since list is always changed by an add */
public boolean add(E o) {
if (this.numElems < this.elements.length) {
this.elements[this.numElems] = o;
this.numElems ++;

}Yelse {
Il'yuck; what can we do here? here's a temporary measure....
throw new RuntimeException("list capacity ded");

}

return true;

}
+ addAll(array or list) left as an exercise — try it at home!
+ Could your solution be put in an abstract superclass?

12-3

Method clear: Signature

** Empty this list */
public void clear() {

}

+ Can be done by adding just one line of code!
+ "Can be", but "should be"?

clear: Code
* Logically, all we need to do is set this.numElems =0

+Butit's good practice to null out all of the object references in
the list. Why?
** Empty this list */
public void clear() {
for (intk = 0; k < this.numElems; k++) { //optional
this.elements[k] = null; // triggers a garbage collection if it is the only
Il reference
}
/IDON'TDO: for (Object o : elements) { o = null;} WHY?
this.numElems = 0;

Method get

[** Return object at position pos of this list
The list is unchanged
*
public E get(int pos) {
return this.elements[pos];
}
+ Anything wrong with this?
Hint: what are the preconditions?

A Better get Implementation

+ We want to catch out-of-bounds arguments, including ones that
reference unused parts of array elements
[* Return object at position pos of this list.
0 <= pos < size(), or IndexOutOfBoundsException is thrown */
public E get(int pos) {
if (pos < 0 || pos >= this.numElems) {
throw new IndexOutOfBoundsException();

return (E) this.elements[pos];
}
+ Question: is a "throws" clause required?
+ Exercise: write out the preconditions more fully
+ Exercise: specify and implement the set method
+ Exercise: rewrite the above with an assert statement

12-4

Method indexOf

+ Sequential search for first “equal” object
** return first location of object o in this list if found, otherwise return -1*/
public int indexOf(Object o) {
for (int k = 0; k < this.size(); k++) {
E elem = this.get(k);
if (elem.equals(o)) {
Il found item; return its position
return k;
}
}

Il item not found
return -1;
}
+ Exercise: write postconditions
+ Could this be implemented in an abstract superclass?

Method contains

I** return true if this list contains object o, otherwise false */
public boolean contains(Object o) {

Il just use indexOf

return this.indexOf(o) != -1;

}

+ As usual, an alternate, implementation-dependent version is
possible

+ Exercise: define "this list contains object 0" more rigorously

remove(pos): Specification

** Remove the object at position pos from this list. Return the removed
element.

0 <= pos < size(), or IndexOutOfBoundsException is thrown */

public E remove(int pos) { o

P
(171717
ey

\(‘? \(‘? \(‘? \(‘? |
return removedElem;
}
+ Postconditions: quite a bit more complicated this time...
* Try writing them out!
* Key observation for implementation:

+ we need to compact the array after removing something in the
middle; slide all later elements left one position

Array Before and After remove

* Bef

elore RRRRERRR
N

*After - Wrong! RRRRERRR
00007

 After - Right! RERERRRE
SO0

12-5

remove(pos): Code

** Remove the object at position pos from this list. Return the removed element.
0 <= pos < size(), or IndexOutOfBoundsException is thrown */
public E remove(int pos) {
if (pos < 0 || pos >= this.numElems) {
throw new IndexOutOfBoundsException();
}
E removedElem = this.elements[pos];
for (int k = pos+1; k < this.numElems; k++) {
this.el [k-1] = this.el [k]; / slide k'th element left by one index
}
this.elements[this.numElems-1] = null; // erase extra ref. to last element, for GC
this.numElems--;
return removedElem;

remove(Object)

** Remove the first occurrence of object o from this list, if present.
@return true if list altered, false if not */
public boolean remove(Object o) {
int pos = indexOf(o);
if (pos !=-1) {
remove(pos);
return true;
Yelse{
return false;
}
}

+ Pre- and postconditions are not quite the same as remove(pos)

add Object at position

[** Add object o at position pos in this list. List changes, so return true
0 <= pos < size(), or IndexOutOfBoundsException is thrown */
public boolean add(int pos, E o) {

* Key implementation idea:

+ we need to make space in the middle; slide all later elements right
one position

* Pre- and postconditions?

FIplplplplplrly]
IO A O G G G 4

add(pos, o0): Code

[** Add object o at position pos in this list. List changes, so return true
0 <= pos < size(), or IndexOutOfBoundsException is thrown */
public boolean add(int pos, E o) {
if (pos < 0 || pos >= this.numElems) {
throw new IndexOutOfBoundsException();
}
if (this.numElems >= this.elements.length) {
I'yuck; what can we do here? here's a temporary measure....
throw new RuntimeException("list capacity ded");
}

... continued on next slide ...

12-6

add(pos, o) (continued)

Ilpreconditions have been met
Il first create a space
for (int k = this.numElems - 1; k >= pos; k --) { // must count down!
this.el ts[k+1] = this.el ts[k]; // slide k'th element right by one index
}

this.numElems ++;

I now store object in the space opened up
this.elements[pos] = o; Il erase extra ref. to last element, for GC
return true;

add Revisited — Dynamic Allocation

+ Our original version of add checked for the case when
adding an object to a list with no spare capacity
+ Butdid not handle it gracefully: threw an exception

+ Better handling: "grow" the array

+ Problem: Java arrays are fixed size — can't grow or shrink
+ Solution: Make a new array of needed size

+ This is called dynamic allocation

Dynamic Allocation Algorithm

Algorithm:
1. allocate a new array with larger capacity,
2. copy the elements from the old array to the new array, and

3. replace the old array with the new one
i.e., make the array name refer to the new array

AR
VO A S S

HAERRRRRRRRRRRRR
YO O e e e e e e G e
Issue: How big should the new array be?

Method add with Dynamic Allocation

+ Following implementation has the dynamic allocation buried out of
sight...

[Add object o to the end of this list

@return true, since list is always changed by an add */
public boolean add(E o) {

this.ensureExtraCapacity(1);

this.elements[this.numElems] = o;

this.numElems ++;

return true;

}

[** Ensure that elements has at least extraCapacity free space,
growing elements if needed */
private void ensureExtraCapacity(int extraCapacity) {
... magic here ...
}

12-7

ensureExtraCapacity

[** Ensure that elements[] has at least extraCapacity free space,
growing elements]] if needed */
private void ensureExtraCapacity(int extraCapacity) {
if (this.numElems + extraCapacity > this.elements.length) {
Il we need to grow the array
int newCapacity = this.elements.length * 2 + extraCapacity;
E[] newElements = (E[]) new Object[newCapacity];
for (int k = 0; k < this.numElems; k++) {
newElementsk] = this.elements[k]; //copying old to new

this.elements = newElements;
}
}

+ Note: this is ensure extra capacity, not add extra capacity (there is an if
statement).

+ Pre- and Post- conditions?
+ Check the method System.arraycopy

Method iterator

+ Collection interface specifies a method iterator() that returns
a suitable Iterator for objects of that class
+ Key lterator methods: boolean hasNext(), E next()

+ Method remove() is optional for Iterator in general, but expected to
be implemented for lists. [left as an exercise]

* |dea: Iterator object holds...
« areference to the list it is traversing and
+ the current position in that list.
+ Can be used for any List, not just ArrayList!
* Except for remove(), iterator operations should never modify
the underlying list

Method iterator

* In class MyArrayList
/** Return a suitable iterator for this list */
public Iterator<E> iterator() {
return new MyListlterator(this);

Class MyListlterator (1)

[** Iterator helper class for lists */
class MyListlterator<E> implements Iterator<E> {
/l'instance variables
private List<E> list; /I the list we are traversing
private int nextltemPos; /I position of next element to visit (if any left)
/linvariant: 0 <= nextltemPos <= list.size()

[** construct iterator object */

public SimpleListlterator(List<E> list) {
this.list = list;
this.nextltemPos = 0;

}

12-8

Class MyListlterator (2)

[** return true if more objects remain in this iteration */
public boolean hasNext() {

return this.nextltemPos < this.list.size();
}
** return next item in this iteration and advance.
Note: changes the state of the Iterator but not of the List

@throws NoSuchElementException if iteration has no more elements */

public E next() {

if (! hasNext()) {

throw new NoSuchElementException();

E result = this.list.get(this.nextitemPos);
this.nextltemPos ++;
return result;

Design Question

* Why create a separate lterator object?

+ Couldn't the list itself have..
+ ...operations for iteration?
hasNext()
next()
reset() //startiterating again from the beginning

+ Actually a more complicated array-based implementation
* Key implementation ideas:

+ capacity vs. size/numElems

+ sliding elements to implement (inserting) add and remove

* growing to increase capacity when needed

growing is transparent to client

_ +Caution: Frequent sliding and growing is likely to be
/1y expensive. ...

}
Summary
* MyArrayList presents an illusion to its clients o
+ Appears to be a simple, unbounded list of elements % ",

12-9

