
1

CSC 143

Abstract classes and
interfaces

2

protected keyword

 protected members are visible to
 any class within the same package
 any subclass even if it is not in the same

package
// file B.java

package com.javaorbust;

public class B {protected int i;}

// file D.java

import com.javaorbust.B;

public class D extends B{

public void update(){ i=6; /* OK */}}

3

Visibility summary

Modifier Visibility

private Class only

none (default) Classes in the package

protected Classes in package and subclasses
inside or outside the package

public All classes

Abstract classes
 Some classes are so abstract that

instances of them shouldn't even exist

 What does it mean to have an instance
of Animal?

 An abstract class is one that should not or
can not be instantiated .

 A concrete class can have instances

 It may not make sense to attempt to fully
implement all methods in an abstract class
 What should Animal.speak() do?

4

abstract keyword
 declare a method with the abstract modifier

to indicate that it just a prototype. It is not
implemented.

public abstract void speak();

 A class that contains an abstract method
must be declared abstract

public abstract class Animal{

public abstract void speak();

// more code

}
5

Using abstract classes

 An abstract class can't be instantiated.
 An abstract class can contain other non

abstract methods and ordinary variables
 To use it, subclass it. Implement the abstract

methods in the subclass
 If a subclass doesn't implement all of the

superclass abstract methods, the subclass is
also abstract and must be declared as such.

 Abstract classes provides a framework to be
filled in by the implementor
 Hierarchy: Shape(abstract) Triangle,

Rectangle, Circle 6

7

Abstract class example
public abstract class Accommodation{
protected boolean vacancy;
protected int NumberOfRooms;
public abstract void reserveRoom();
public abstract void checkIn();
// etc...

}
public class Motel extends Accommodation{
//must implement all of the abstract
//methods of Accommodation
//(if we want the class to be instantiated)
//code would follow

}

Interfaces
 An interface is a purely abstract class
 An interface specifies a set of methods that a

class must implement (unless the class is
abstract)

 Everything inside an interface is implicitly public
and abstract.
public interface Driveable{
// methods are always public (even if
// public is omitted)
// using abstract is optional
boolean startEngine();
void stopEngine();
boolean turn(Direction dir);

}

8

9

Using interfaces (1)

 An interface defines some set of behavior for an
object. Think of an interface as a badge that can
be worn by a class to say "I can do that".

public class Automobile implements Driveable {

// implements the methods of Driveable

public boolean startEngine()

{ if (notTooCold) engineRunning = true;

// more code

}

// other methods

}

Using interfaces (2)
 Interface types act like class types.

 Variables can be of an interface type
 formal parameters can be of an interface type
 A method return type can be an interface

type
 Any object that implements the interface can

fill that spot.
 A class can implement as many interfaces as

desired
public class C extends B implements I1, I2, I3
{ /* class code */}

 This is how Java deals with multiple
inheritance (C++)

10

11

Interface variables

 An interface can contain constants (public
static final variables)

public interface Scaleable
{

//public static final is implicit and can be

//omitted

public static final int BIG=0, MEDIUM=1,
SMALL=2;

void setScale(int size);

}

subinterfaces

 An interface can extend another interface,
e.g.

public interface DynamicallyScaleable
extends Scaleable{

void changeScale(int size);
}

 A class that implements a subinterface
must implement all of the methods in the
interfaces of the hierarchy.

 An interface can extend any number of
interfaces

public interface I extends I1, I2 {
/* interface code */ }

12

