
Name:___CSC143 – Exam 2 1
 (Last) (First)

CSC 143

Exam 2

Name:___CSC143 – Exam 2 2
 (Last) (First)

Short Answers

1) Circle among the following the types that are defined as interfaces within the java collections

framework

Set ArrayList Collection Collections Iterator Map LinkedList TreeMap

2) Complete in big O notation (e.g. O(n)) the following table for the sorting algorithms studied in

class

 Worst case Best case
Insert sort O(n2) O(n)
Merge sort O(n log n) O(n log n)
Quick sort O(n log n) O(n2)

3) Show that 2n2 + 6n + 1= O(n2). That is find two constants c and n0 such that
for any n ≥ n0, 2n2 + 6n + 1 ≤ cn2

Take c = 3. To get

2n2 + 6n + 1 ≤ 3n2 or

we need 6n + 1 ≤ n2

which is true for any n >= 7

Thus, c = 3, and n0 = 7

4) You are given two algorithms P and Q that solve the same problem. You know that P = O(n)

and Q = O(n2). Which algorithm is the fastest for n = 100? Explain.

We can’t tell. The big O notation gives information about the algorithm for large n. We know that
there exists n0 such that for any n >= n0, P grows at most like n, and Q grows at most like n2.
However, the value of n0 is unknown from the information given. Moreover, the big O notation
gives an upper bound. It could be that Q = O(1) as well. That is we can’t even tell that P is more
efficient that Q for large n (in practice however, the most stringent bound is given).

Name:___CSC143 – Exam 2 3
 (Last) (First)

5) Complete the method below that returns the number of lines in a text file. Handle possible
exceptions with a throws statement. Don’t use any method from the File class or the
LineNumberReader class.
Make sure that you implement efficient streams (i.e. use wrappers)

public int countLines(String filename) throws IOException {

BufferedReader in =
new BufferedReader(new FileReader(filename));

int count = 0;

while (in.readLine() != null) {

count ++;

}

in.close();

return count;

}

6) What would be the programming consequences of making all exceptions in Java checked

exceptions?

Since any non trivial piece of code may throw exceptions, the code within a method would have
to be written inside a try block followed by one or more catch blocks, or the method would
have to list all of the exceptions that may be thrown. This would bloat the code and make the
Java language very unattractive.

Name:___CSC143 – Exam 2 4
 (Last) (First)

7) Why does the following method within a Java class generate a compile-time error? How would
you fix it?

public void fileOperation() {
 try {
 FileWriter out = new FileWriter (“myFile.txt”);
 // code omitted …
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 catch (FileNotFoundException e) {
 System.out.println(e.getMessage());
 }
}

Since Exception is a base class of FileNotFoundException, any exception of type
FileNotFoundException can be caught by the first catch block. It is never caught by the
second catch block. The order of the two catch blocks should be reversed.

8) What is the asymptotic complexity of the following method? In other words, what is foo(n) in
big O notation? Make sure that you explain why.

 public int foo(int i) {
 if (i <= 1) {
 return 1;
 }
 else {
 return foo(i/2);
 }
 }

Take n = 2k. To evaluate f(n), foo is called k + 1 times. Each call is O(1). Therefore, f(n) =
O(log n).

Name:___CSC143 – Exam 2 5
 (Last) (First)

9) Consider the method bar given below. Note the differences between foo and bar. What is bar(n)
in big O notation? Make sure that you explain why.

 public int bar(int i) {
 if (i <= 1) {
 return 1;
 }
 else { // this is not the same as foo
 int a = bar(i/2);
 int b = bar(i/2);
 return a + b;
 }
 }

Take n = 2k. bar(n) requires evaluating bar(n/2) = bar(2k-1) twice. Evaluating bar(n/2)
requires evaluating bar(n/4 = 2k-2) twice and so on.

The number of calls of bar is 20 + 21 + 22 + … + 2k = 2k+1 – 1 = 2n -1. Thus bar(n) = O(n).

10) Given the following stack S that contains strings as described below:

“Banana” ← top of the stack

“Apple”

“Cherry”

show what the stack will look like after the following sequence of operations.
S.push(“Kiwi”);
S.push(“Kiwi”);
S.pop();
String fruit = S.top();
S.push(“Orange”);
while (!S.isEmpty() && !S.top().equals(fruit)) S.pop();

 “Kiwi”
“Banana”
“Apple”
“Cherry”

Name:___CSC143 – Exam 2 6
 (Last) (First)

11) Assume head initially points to the following list of chars:

head -> [a] -> [b] -> [c] -> [d]

where the list nodes are instances of the following class

public class Node {

public char value;
public Node next;

}

After the code below executes, what is printed?

Node ptr1, ptr2, p;
ptr1 = head;
ptr2 = head.next;
ptr1.next = ptr2.next.next;
ptr2.next.next = ptr1;
p = head;
head = head.next;
while(p!=null){

System.out.print(p.value + " ");
p=p.next;

}

A D

12) What is the postfix expression of the infix expression

3 / A + (B - 12) % C?
(There is only one answer)

3 A / B 12 – C % +

Name:___CSC143 – Exam 2 7
 (Last) (First)

13) What is the basic difference between the Reader/Writer and InputStream/OutputStream
collections of classes?

Reader and Writer are base classes for character streams. InputStream and OutputStream are
base classes for byte streams.

14) Check the most efficient list implementation (array or linked list) for the following problems?

If both implementations are as efficient, check both of them.

 Array implementation Linked list implementation
Random access of an item
(e.g. accessing element i of
the list for any i)

X

Insertion/deletion of an item
(assumes that the item has
been located)

X

Binary search X
Simulation of a stack X
Simulation of an unbounded
queue*.

 X

An unbounded queue is a list that has no limit on the number of items it contains. Queue operations
are adding at the end of the queue, and removing from the front of the queue.

Name:___CSC143 – Exam 2 8
 (Last) (First)

Programming questions

1) Consider an expression that contains grouping symbols. The grouping symbols are (), [].

Expressions are considered to be balanced if their grouping symbols follow the following rules

a) each left symbol must be followed by a right symbol of the same kind with some data in
between (ie. you can't have an empty pair like [])

b) if pairs are nested , one pair must be completely nested within another.
For example, “[)”, “)a(“, and “([a)]” are not balanced.
”(a)”, “([a b])((c + d))”, and “abc” are balanced.

Write a method isBalanced that returns true if the given string is balanced, and false otherwise.
Use a character stack in your implementation (assume that you have access to a CharacterStack
class).

public boolean isBalanced(String s) {

if (s == null) {
throw new IllegalArgumentException("Null string");

}

CharacterStack stack = new CharacterStack ();

// Your code goes here
 boolean hasData = false;

 for (int i = 0; i < s.length(); i ++) {
 char c = s.charAt(i);

 if (c == '(') {
 stack.push(c);
 hasData = false;
 }
 else if (c == '[') {
 stack.push(c);
 hasData = false;
 }
 else if (c == ')') {
 if (stack.isEmpty()) return false;
 if (stack.pop() != '(') return false;
 if (!hasData) return false;
 }
 else if (c == ']') {
 if (stack.isEmpty()) return false;
 if (stack.pop() != '[') return false;

Name:___CSC143 – Exam 2 9
 (Last) (First)

 if (!hasData) return false;
 }
 else {
 hasData = true;
 }
 }
 return hasData && stack.isEmpty();

 }

Name:___CSC143 – Exam 2 10
 (Last) (First)

1) In a circular linked list, the last node references the first node so that every node has a successor.
Pictorially, a circular linked list looks like this:

Consider a class CircularLinkedList that uses the above data structure for a list. Implement an
iterator within that class. You are given the structure on the next page. Just fill in the code. Do not
use any helper methods from the java collections framework. Access the nodes directly.

Don’t forget to throw a NoSuchElementException in next if necessary

public class CircularLinkedList implements List {

private Node head;
private int size;

private class Node {

Object item;
Node next;
Node(Object i) { item = i; }

}

// most of class not listed

public Iterator iterator() { return new Itr(this); }

/***
* ADD YOUR CODE TO THE CLASS ON THE NEXT PAGE
**/

head

Name:___CSC143 – Exam 2 11
 (Last) (First)

private class Itr implements Iterator {

// add your instance variable(s)
Node p;
boolean done;

public Itr(CircularLinkedList list) {

p = list.head;
}

public boolean hasNext() {

return !(p == null || done) ;
}

public Object next() {
 if (!hasNext()) {

throw new NoSuchElementException();
}
else {

Object item = p.item;
p = p.next;
done = (p == head);
return item;

}
}

public void remove() { // don’t code this one

throw new UnsupportedOperationException();
}

}
}

