(First)

CSC 143

Exam 2

Short Answers [50 points]

(First)

- 1) [3 points] Circle among the following the types that are defined as <u>interfaces</u> within the java collections framework
- Set ArrayList Collection Collections Iterator Map LinkedList TreeMap
- 2) [3 points] Complete in big O notation (e.g. O(n)) the following table for the sorting algorithms studied in class

	Worst case	Best case
Insert sort		
Merge sort		
Quick sort		

3) [3 points] Show that $2n^2 + 6n + 1 = O(n^2)$. That is find two constants c and n_0 such that

for any $n \geq n_0, \, 2n^2 + 6n + 1 \leq cn^2$

4) [3 points] You are given two algorithms P and Q that solve the same problem. You know that P = O(n) and $Q = O(n^2)$. Which algorithm is the fastest for n = 100? Explain.

Name:			CSC143 – Exam 2 3
_	(Last)	(First)	

5) [6 points] Complete the method below that returns the number of lines in a text file. Handle possible exceptions with a **throws** statement. Don't use any method from the File class or the LineNumberReader class. <u>Make sure that you implement efficient streams</u> (i.e. use wrappers)

public int countLines(String filename)

6) [3 points] What would be the programming consequences of making all exceptions in Java checked exceptions?

Name:

(Last)

7) [3 points] Why does the following method within a Java class generate a compiletime error? How would you fix it?

```
public void fileOperation() {
    try {
        FileWriter out = new FileWriter ("myFile.txt");
        // code omitted ...
    }
    catch (Exception e) {
        System.out.println(e.getMessage());
    }
    catch (FileNotFoundException e) {
        System.out.println(e.getMessage());
    }
}
```

(First)

8) [5 points] What is the asymptotic complexity of the following method? In other words, what is foo(n) in big O notation? Make sure that you explain why.

```
public int foo(int i) {
    if (i <= 1) {
        return 1;
    }
    else {
        return foo(i/2);
    }
}</pre>
```

Name:

}

(Last)

(First)

9) [5 points] Consider the method bar given below. Note the differences between foo and bar. What is bar(n) in big O notation? Make sure that you explain why.

```
public int bar(int i) {
     if (i <= 1) {
          return 1;
     }
     else { // this is not the same as foo
          int a = bar(i/2);
          int b = bar(i/2);
          return a + b;
     }
```

10) [3 points] Given the following stack S that contains strings as described below:

```
"Banana"
              \leftarrow top of the stack
"Apple"
"Cherry"
```

show what the stack will look like after the following sequence of operations.

```
S.push("Kiwi");
S.push("Kiwi");
S.pop();
String fruit = S.top();
S.push("Orange");
while (!S.isEmpty() && !S.top().equals(fruit)) S.pop();
```

(First)

11) [3 points] Assume **head** initially points to the following list of chars:

head \rightarrow [a] \rightarrow [b] \rightarrow [c] \rightarrow [d]

(Last)

where the list nodes are instances of the following class

```
public class Node {
    public char value;
    public Node next;
}
```

After the code below executes, what is printed?

```
Node ptr1, ptr2, p;
ptr1 = head;
ptr2 = head.next;
ptr1.next = ptr2.next.next;
ptr2.next.next = ptr1;
p = head;
head = head.next;
while(p!=null){
    System.out.print(p.value + " ");
    p=p.next;
}
```

12) [3 points] What is the postfix expression of the infix expression
3 / A + (B - 12) % C? (There is only one answer)

Name:			CSC143 – Exam 2 7
	(Last)	(First)	

13) [3 points] What is the basic difference between the Reader/Writer and InputStream/OutputStream collections of classes?

14) [4 points] Check the most efficient list implementation (array or linked list) for the following problems? If both implementations are as efficient, check both of them.

	Array implementation	Linked list implementation
Random access of an item		
(e.g. accessing element i of		
the list for any i)		
Insertion/deletion of an item		
(assumes that the item has		
been located)		
Binary search		
Simulation of a stack		
Simulation of an unbounded		
queue [*] .		

An unbounded queue is a list that has no limit on the number of items it contains. Queue operations are adding at the end of the queue, and removing from the front of the queue.

Programming questions [50 points]

(First)

- 1) [30 points] Consider an expression that contains grouping symbols. The grouping symbols are (), []. Expressions are considered to be balanced if their grouping symbols follow the following rules
 - a) each left symbol must be followed by a right symbol of the same kind with some data in between (ie. you can't have an empty pair like [])

b) if pairs are nested, one pair must be completely nested within another.

For example, "[)", ")a(", and "([a)]" are not balanced. "(a)", "([a b])((c + d))", and "abc" are balanced.

Write a method isBalanced that returns true if the given string is balanced, and false otherwise. Use a character stack in your implementation (assume that you have access to a CharacterStack class).

public boolean isBalanced(String s) {

```
if (s == null) {
    throw new IllegalArgumentException("Null string");
}
CharacterStack stack = new CharacterStack ();
// Your code goes here
```

(First)

Name:

(Last)

(First)

2) [20 points] In a circular linked list, the last node references the first node so that every node has a successor. Pictorially, a circular linked list looks like this:

Consider a class CircularLinkedList that uses the above data structure for a list. Implement an iterator within that class. You are given the structure on the <u>next page</u>. Just fill in the code. Do not use any helper methods from the java collections framework. Access the nodes directly.

Don't forget to throw a NoSuchElementException in next if necessary

```
Name:
```

}

```
(Last)
                                  (First)
private class Itr implements Iterator {
     // add your instance variable(s)
     public Itr(CircularLinkedList list ) {
     }
     public boolean hasNext() {
     }
     public Object next() {
     }
     public void remove() { // don't code this one
          throw new UnsupportedOperationException();
     }
}
```