
Exception exercises

A. Consider the following method

public int dummy() throws IOException {
 int value = 0;
 try {
 value = 1;
 contractor.doIt();
 value = 2;
 } catch (NullPointerException e) {
 value += 10;
 } catch (RuntimeException e) {
 value += 20;
 }
 return value;
}

What value does the method return if contractor.doIt:

1. throws a NullPointerException
2. throws an ArithmeticException
3. throws an IOException
4. throws an AssertionError
5. completes successfully

B. Consider the following method
/**
 * The number of lines in the specified file
 */

public int lineCount(File file) {
BufferedReader reader = new BufferedReader(new
FileReader(file));
int count = 0;
String line;
while ((line = reader.readLine())!= null) {

count ++;
}
reader.close();
return count;

}

Complete the code above so that in case of an exception
thrown by an IO method,

1. the method ignores the exception and lets it propagate
to the client.

2. the method catches the exception and returns -1
3. the method catches the exception, writes out an error

message, and terminates the program.
4. the method catches the exception, writes out an error

message, and returns a value of -1 to the client.
5. the method catches the exception, and throws another

exception to the client.

C. Consider the following method for posting a withdrawal
from an account
 public void withdraw(int amount) {
 this.balance -= amount;
 notifyObservers();

 log.logWithdrawal(this.accountNumber,
amount);
 }

A withdrawal is not complete unless it is successfully
logged. But the method logWithdrawal might return a
LogFailureException if the entry cannot be logged.

Modify the method so that it catches the exception and
resets the balance to its original value before throwing an
UnsuccessfulWithdrawalException to its client. Assume
that notifyObservers must be done after updating the
balance and before logging the withdrawal.

Answers for part A:

1. throws a NullPointerException
returns 11

2. throws an ArithmeticException
returns 21 (ArithmeticException is derived from
RuntimeException)

3. throws an IOException
doesn't return any value since IOException is not
caught in dummy

4. throws an AssertionError
doesn't return any value since AssertionError is not
caught in dummy (an Error shouldn't actually be
caught anywhere)

5. completes successfully
returns 2

