

CSC 142 Review:

Select the correct answer between the parentheses:

A class may inherit from (only one/ one or more) class(es) and implement (only one/one
or more) interfaces.

Answer briefly the following questions:

What is the Object class?

What does instanceof do? Give an example

What does getClass() do? Give an example

Explain the differences and similarities between a concrete class, an abstract class, and an
interface by labeling the following statements as true or false.

A concrete class / an abstract class/ an interface

defines a type

can be instantiated

contains constructors

may contain abstract methods

may have instance fields

may inherit from a class

may implement an interface

Inheritance mysteries. Explain and show your work.

Assume that the following classes have been defined:

public class Denny extends John {
 public void method1() {
 System.out.print("denny 1 ");
 }
 public String toString() {
 return "denny " + super.toString();
 }
}
public class Cass {
 public void method1() {
 System.out.print("cass 1 ");
 }
 public void method2() {
 System.out.print("cass 2 ");
 }
 public String toString() {
 return "cass";
 }
}
public class Michelle extends John {
 public void method1() {
 System.out.print("michelle 1 ");
 }
}
public class John extends Cass {
 public void method2() {
 method1();
 System.out.print("john 2 ");
 }
 public String toString() {
 return "john";
 }
}

Given the classes above, what output is produced by the following code?

Cass[] elements = {new Cass(), new Denny(), new John(), new Michelle()};
for (int i = 0; i < elements.length; i++) {
 elements[i].method1();
 System.out.println();
 elements[i].method2();
 System.out.println();
 System.out.println(elements[i]);
 System.out.println();
}

Assume that the following classes have been defined:

public class Tulip extends Rose {
 public void method1() {
 System.out.print("Tulip 1
");
 }
}

public class Violet {
 public void method1() {
 System.out.print("Violet 1
");
 }

 public void method2() {
 System.out.print("Violet 2
");
 }

 public String toString() {
 return "Violet";
 }
}

public class Rose extends Lily {
 public String toString() {
 return "Rose " +
super.toString();
 }
}

public class Lily extends Violet {
 public void method1() {
 super.method1();
 System.out.print("Lily 1 ");
 }

 public void method2() {
 System.out.print("Lily 2 ");
 method1();
 }

 public String toString() {
 return "Lily";
 }
}

Given the classes above, what output is produced by the following code?

Violet[] pretty = { new Tulip(), new Lily(), new Violet(), new Rose() };
for (int i = 0; i < pretty.length; i++) {
 System.out.println(pretty[i]);
 pretty[i].method1();
 System.out.println();
 pretty[i].method2();
 System.out.println();
 System.out.println();
}

Consider the following classes:

public class Foo {
 public void method1() {
 System.out.println("foo 1");
 method2();
 }

 public void method2() {
 System.out.println("foo 2");
 }
}

public class Bar extends Foo {
 public void method2() {
 System.out.println("bar 2");
 }

 public void method3() {
 System.out.println("bar 3");
 }
}

public class Baz extends Foo {
 public void method1() {
 System.out.println("baz 1");
 }

 public void method2() {
 System.out.println("baz 2");
 method1();
 }
}

public class Mumble extends Baz {
 public void method1() {
 super.method1();
 System.out.println("mumble 1");
 }

 public void method3() {
 System.out.println("mumble 3");
 }
}

Suppose the following variables are defined:

Foo var1 = new Bar();
Foo var2 = new Mumble();
Bar var3 = new Bar();
Baz var4 = new Baz();
Baz var5 = new Mumble();
Object var6 = new Baz();

Indicate on each line below the output produced by each statement shown. If the
statement produces more than one line of output indicate the line breaks with slashes
as in a/b/c to indicate three lines of output with a followed by b followed by c. If the
statement causes an error, write the word error to indicate this.

var1.method1();

var2.method1();

var3.method1();

var4.method1();

var5.method1();

var6.method1();

var1.method2();

var2.method2();

var3.method2();

var4.method2();

var5.method2();

var6.method2();

var3.method3();

var5.method3();

((Bar) var1).method3();

((Mumble) var4).method3();

((Mumble) var5).method3();

((Baz) var2).method3();

((Baz) var2).method2();

((Mumble) var6).method2();

1D arrays.

Write a method weave that takes two arrays of ints, a and b, and that
returns an array that contains the elements of a and b in the order

a[0], b[0], a[1], b[1], etc.

If one of the arrays a or b is longer than the other, just add the
extra elements at the end of the array.

For example, consider the arrays
 a: [10, 20, 30], and b : [1, 2, 3, 4, 5, 6]
The call weave(a, b) would return the array
[10, 1, 20, 2, 30, 3, 4, 5, 6]
As you can see, the array returned by the method contains the elements
of a and b in the order a[0], b[0], a[1], b[1], etc. Since b is longer
the extra elements of b are added at the end of the array.

In your solution, you can use only 3 arrays, namely the two arrays a,
and b passed to the method and the array returned by the method.

You can’t use any ArrayList, String, or Collection object.

You may assume that none of the arrays passed to the method are null,
though one of them or both of them may be empty. If both arrays passed
to the method are empty, just return an empty array.

Write your solution on the next page.

public int[] weave(int[] a, int[] b) {

Write a method named swapAll that accepts two arrays of integers as parameters and
swaps their entire contents. You may assume that the arrays passed are not null and are
the same length.

For example, if the following arrays are passed:

int[] a1 = {11, 42, -5, 27, 0, 89};
int[] a2 = {10, 20, 30, 40, 50, 60};
swapAll(a1, a2);

After the call, the arrays should store the following elements:

a1: {10, 20, 30, 40, 50, 60}
a2: {11, 42, -5, 27, 0, 89}

Inheritance
Suppose a class GroceryBill keeps track of a list of items being purchased at a
market:

Method/Constructor Description

public GroceryBill(Employee
clerk)

constructs a GroceryBill object for the
given clerk

public void add(Item i) adds i to this bill's total

public double getTotal() returns the cost of these items

public void printReceipt() prints a list of items

GroceryBill objects interact with Item objects. An Item has the following
public methods:

Method/Constructor Description

public double getPrice() returns the price for this item

public double getDiscount() returns the discount for this item

For example, a candy bar item might cost 1.35 with a discount of 0.25 for
preferred customers, meaning that preferred customers get it for 1.10. (Some
items will have no discount, 0.0.) Currently the above classes do not consider
discounts. Every item in a bill is charged full price, and item discounts are
ignored.
Define a class DiscountBill that extends GroceryBill to compute discounts
for preferred customers. The constructor for DiscountBill accepts a parameter
for whether the customer should get the discount.
Your class should adjust the amount reported by getTotal for preferred
customers. For example, if the total would have been $80 but a preferred
customer is getting $20 in discounts, then getTotal should report the total as
$60 for that customer. You should also keep track of how many items a
customer is getting a non-zero discount for and the overall discount, both as a
total amount and as a percentage of the original bill. Include the extra methods
below that allow a client to ask about the discount:

Method/Constructor Description

public DiscountBill(Employee
clerk, boolean preferred)

constructs discount bill for given clerk

public int getDiscountCount() returns the number of items that were
discounted, if any

public double
getDiscountAmount()

returns the total discount for this list of
items, if any

public double
getDiscountPercent()

returns the percent of the total discount
as a percent of what the total would have
been otherwise

If the customer is not a preferred customer the DiscountBill behaves at all
times as if there is a total discount of 0.0 and no items have been discounted.

1D and 2D arrays

Write a method that takes an array of ints a and a positive int n and that returns a 2D rectangular
array that has n rows and that contains the elements of a.

The 2D array is filled with the elements of a taken in the order of increasing index (a[0], a[1],
a[2], etc.) such that the columns are alternately filled top down and bottom up. That is the first
column is filled from top to bottom, the second column is filled from bottom to top, the third
column is filled from to top to bottom, and so on. Any unused element in the 2D array is set to 0.

For example if a contains the elements
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
and n is 4
the method should return the 2D array

1 8 9 0
2 7 10 15
3 6 11 14
4 5 12 13

	exam3142f14Review
	Exam3ReviewExtraQuestion

