
04-1

CSC 142 O 1

CSC 142 Java

More About Inheritance & Interfaces

CSC 142 O 2

Overview
• An assortment of topics related to inheritance

• Class Object
• toString
• instanceof
• Overloading and overriding
• Abstract and concrete classes
• Inheritance vs composition: which to use?
• Abstract classes vs interfaces

CSC 142 O 3

Inheritance Reviewed
• A class can be defined as an extension another one

• Inherits all behavior and state from base (super-) class
But only has direct access to public or protected methods/variables

• Use to factor common behavior/state into classes that can
be extended/specialized as needed

• Useful design technique: find a class that is close to what
you want, then extend it and override methods that aren’t
quite what you need

CSC 142 O 4

Class Object
• In Java’s class model, every class directly or indirectly extends

Object, even if not explicitly declared
class Foo{ … } has the same meaning as class Foo extends Object{ … }

• Class Object
• is the root of the class hierarchy
• contains a small number of methods which every class inherites (often

overridden with something more suitable)
toString(), equals(), clone(), …

CSC 142 O 5

Aside – toString()
• Most well-designed classes should override toString() to

return a meaningful description of an instance
Rectangle[height: 10; width: 20; x: 140; y: 300]
Color[red: 120; green: 60; blue: 240]
(BankAccount: owner=Bill Gates, Balance = beyond your imagination)

• Called automatically whenever the object is used in a context
where a String is expected

• Use with System.out for a crude, surprisingly effective
debugging tool

System.out.println(unusualBankAccount);
System.out.println(suspectRectangle);

CSC 142 O 6

instanceof
• The expression

<object> instanceof <classOrInterface>

is true if the object is an instance of the given class or
interface (or any subclass or subinterface of the one given)

• Use should be rare in well-written code
• Often overused by inexperienced programmers when method

override and dynamic dispatch should be used
• One common use: checking types of generic objects before casting

Object o = aList.get(i);
if (o instanceof ThingThatCanJump) {

ThingThatCanJump t = (ThingThatCanJump) o;
t.jump(veryHigh); …

04-2

CSC 142 O 7

Overriding and Overloading
• In spite of the similar names, these are very different
• Overriding: Redefinition of a method in a derived (sub-) class

• Replaces the method that would otherwise be inherited
class One { … public void doIt(…) { … } … }
class Two extends One { … public void doIt(…) { … } … }

• Parameter lists must match exactly (number and types)
• Method called depends on actual (dynamic) type of the object

CSC 142 O 8

Overloading
• A class may contain multiple definitions for constructors or

methods
class Many {

public Many() { … }
public Many(int x) { … }
public Many(double x, String s) { … }
public void another(Many m, String s) { … }
public void another(String[] names) { … }

• Known as overloading
• Parameter lists must differ in number or type of parameters or both
• Method calls are resolved automatically depending on number and

types of arguments – must be a unique best match

CSC 142 O 9

Overriding vs Overloading
• Overriding

• Provides an alternative implementation of an inherited method

• Overloading
• Provides several implementations of the same method

These are completely independent of each other

• Mixing the two – potentially confusing – avoid!
• Pitfall: attempt to override a method, but something is slightly

different in the parameter list. Result: new method overloads
inherited one, doesn’t override; new method doesn’t get called when
you expect it

CSC 142 O 10

What is a generic Animal?
• Example: class Animal (base class for Dog and Cat)

• What noise should a generic Animal make?
• Answer: doesn’t really make sense!

• Purpose of class Animal
• provide common specification for all Animals
• provides implementation for some methods
• intended to be extended, not used directly to create objects

CSC 142 O 11

Abstract Classes
• Idea: classes or methods may be declared abstract

• Meaning: meant to be extended; can’t create instances

• If a class contains an abstract method, it must be declared
abstract

• A class that extends an abstract class can override methods
as usual

• A class that provides implementation for all abstract methods
it inherits is said to be concrete
• If a class inherits an abstract method and doesn’t override it, it is still

abstract

CSC 142 O 12

Example: Animals
public abstract class Animal { // abstract class

// instance variables
….
/** Return the noise an animal makes */
public abstract String noise() ;

}

public class Cat extends Animal { // concrete class
/** Return the noise a cat makes */
public String noise() { return “purrr”; }

}

04-3

CSC 142 O 13

Using Inheritance
• Java inheritance limitation: a class can only extend one class
• Use of inheritance, with or without abstract classes is only

appropriate when the classes are related conceptually
• Never use inheritance just to reuse code from another class

• Composition is normally appropriate if you want to use code
in another class, but the classes are otherwise unrelated

class SomeClass {
private ArrayList localList; // class used to implement SomeClass

// Does not make sense for SomeClass
// to extend ArrayList

CSC 142 O 14

Abstract Classes vs Interfaces
• Both of these specify a type
• Interface

• Pure specification, no implementation

• Abstract class
• Specification plus, optionally, partial or full default implementation

• Which to use?

CSC 142 O 15

Interfaces
• Advantages

• More flexible than inheritance; does not tie the implementing class
to implementation details of base class

• Classes can implement many interfaces
• Can make sense for classes that are not related conceptually to

implement the same interface (unrelated Things in a simulation,
mouse click listeners in a user interface)

• But …
• Can’t inherit (reuse) a default implementation

CSC 142 O 16

A Design Strategy
• These rules of thumb seem to provide a nice balance for

designing software that can evolve over time
(Might be a bit of overkill for some CSC143 projects)

• Any major type should be defined in an interface
• If it makes sense, provide a default implementation of the interface
• Client code can choose to either extend the default implementation,

overriding methods that need to be changed, or implement the
complete interface directly

• We’ll see this frequently when we look at the Java libraries

