
CSC142 N 1

CSC 142

Abstract classes and 
interfaces

CSC142 N 2

protected keyword
• protected members are visible to 

• any class within the same package
• any subclass even if it is not in the same 

package
// file B.java

package com.javaorbust;
public class B {protected int i;}
// file D.java
import com.javaorbust.B;
public class D extends B{
public void update(){ i=6; /* OK */}}

CSC142 N 3

Visibility summary

All classespublic

Classes in package and subclasses 
inside or outside the package

protected
Classes in the packagenone (default)

Class onlyprivate
VisibilityModifier

CSC142 N 4

Abstract classes
• Some classes are so abstract that 

instances of them shouldn't even exist
• What does it mean to have an instance 

of Animal?
• An abstract class is one that should not or 

can not be instantiated .

• ≠ A concrete class can have instances
• It may not make sense to attempt to fully 

implement all methods in an abstract class
• What should Animal.speak() do?

CSC142 N 5

abstract keyword
• declare a method with the abstract modifier 

to indicate that it just a prototype. It is not 
implemented.

public abstract void speak();

• A class that contains an abstract method 
must be declared abstract

public abstract class Animal{

public abstract void speak();

// more code

}
CSC142 N 6

Using abstract classes
• An abstract class can't be instantiated.
• An abstract class can contain other non 

abstract methods and ordinary variables
• To use it, subclass it. Implement the abstract 

methods in the subclass
• If a subclass doesn't implement all of the 

superclass abstract methods, the subclass is 
also abstract and must be declared as such.

• Abstract classes provides a framework to be 
filled in by the implementor
• Hierarchy: Shape(abstract) →Triangle, 

Rectangle, Circle



CSC142 N 7

Abstract class example
public abstract class Accommodation{
protected boolean vacancy;
protected int NumberOfRooms;
public abstract void reserveRoom();
public abstract void checkIn();
// etc...

}
public class Motel extends Accommodation{
//must implement all of the abstract 
//methods of Accommodation
//(if we want the class to be instantiated)
//code would follow

}
CSC142 N 8

Interfaces
• An interface is a purely abstract class
• An interface specifies a set of methods that a 

class must implement (unless the class is 
abstract)

• Everything inside an interface is implicitly public
public interface Driveable{
// methods are always public (even if
// public is omitted)
// using abstract is optional
boolean startEngine();
void stopEngine();
boolean turn(Direction dir);

}

CSC142 N 9

Using interfaces (1)
• An interface defines some set of behavior for an 

object. Think of an interface as a badge that can 
be worn by a class to say "I can do that".

public class Automobile implements Driveable {
// implements the methods of Driveable
public boolean startEngine()
{ if (notTooCold) engineRunning = true;

// more code
}
// other methods

}

CSC142 N 10

Using interfaces (2)
• Interface types act like class types. 

• Variables can be of an interface type
• formal parameters can be of an interface type
• A method return type can be an interface 

type
• Any object that implements the interface can 

fill that spot.
• A class can implement as many interfaces as 

desired
public class C extends B implements I1, I2, I3 
{ /* class code */}

• This is how Java deals with multiple 
inheritance (≠ C++)

CSC142 N 11

Interface variables
• An interface can contain constants (static final

variables)
public interface Scaleable
{

//static final is implicit and can be

//omitted

static final int BIG=0, MEDIUM=1, SMALL=2;

void setScale(int size);

}

CSC142 N 12

subinterfaces
• An interface can extend another interface, 

e.g.
public interface DynamicallyScaleable

extends Scaleable{
void changeScale(int size);

}
• A class that implements a subinterface

must implement all of the methods in the 
interfaces of the hierarchy.

• An interface can extend any number of 
interfaces

public interface I extends I1, I2 {
/* interface code */ }


