
CSC142 M 1

CSC 142

Inheritance
[Reading: chapters 8, 9]

CSC142 M 2

Introduction
• Classes have proven very useful

• They help us write programs the way we
view the world: interface vs implementation

• There is more to come! Java supports object
oriented programming, i.e.,
• Inheritance (sub classing)
• Dynamic dispatch (polymorphism)

• Two very powerful programming tools!
• They help us write less code

CSC142 M 3

Composition: has-a relationship
• We have used many times several classes

together, e.g.,
• Use an instance of a class as an instance

field of another class
public class Landscape
{
private Mountain m = new Mountain();

}

• This a "has-a" relationship
• A Landscape "has-a" Mountain

• Also called aggregation CSC142 M 4

Organization hierarchy

• Often, we classify things according to a
hierarchy (from general to specific), e.g.
part of the organization of a university

UniversityMember

Staff Faculty

LecturerProfessor

Student

Freshman Sophomore

CSC142 M 5

Inheritance: is-a relationship

• Objects have also an "is-a" relationship

• A Freshman "is-a" Student , a Lecturer
"is-a" UniversityMember

• Java gives us the tools to implement an "is-
a" relation. We can map our view of the
world on the computer

CSC142 M 6

Inheritance in Java
• Inheritance is a way to encode the "is-a" relation

in OO languages
• Freshman declares that it "is-a" Student by

inheriting from it
• A derived class inherits from a base class by

writing "extends BaseClassName" in the
derived class declaration

public class Freshman extends Student
{ /* Freshman-specific stuff here */}

derived class
(or subclass)

base class
(or superclass)

CSC142 M 7

What is inherited? (1)
• The subclass inherits all of the public or

protected or private members(data+methods)
of its superclass.

• Members declared public or protected within
the superclass can be used by the subclass as
if they were declared within the subclass itself.

• protected member of a class: visible within the
class itself, the package of the class, and the
subclasses (even if they are in a different
package). More on protected later.

CSC142 M 8

What is inherited? (2)
• private members of the superclass are

unavailable outside the superclass scope.
• package level members of the superclass are

unavailable outside the package scope. If the
superclass and subclass are in the same
package, the subclass can access any
package level members of the superclass

• A subclass instance is also a superclass
instance (is-a relation).
• All methods of the superclass can be used on

a subclass instance.

CSC142 M 9

Scope example
• Base.java

package org.seattlecentral;
public class Base {
public int i; //visible everywhere
int j;//visible within the package
protected int k; //visible within
// the package and any derived class
private int l;// visible within Base only
}

• Derived.java
import edu.seattlecentral.Base;
public class Derived extends Base{
public void update(){

i=4; // OK
j=5; //Error, not in the same package
k=6; // OK
l=7; /*Error (not in Base)*/}} CSC142 M 10

Example: Person, Student
• A person has a name, an age and can speak
• A student is a person with a gpa

Person

name: String

age: int

speak: void Student

gpa: double

derived from

CSC142 M 11

Person class
public class Person{

public String name; // any name is OK
private int age; // 0<=age<=130
public Person(){
//Call the other constructor
this("someone",20);}

public Person(String s, int a){
name = s; setAge(a); }

public void setAge(int a){
if (a>=0 && a<=130) age=a;}

public int getAge(){return age;}
public void speak(){
System.out.println("Hi, I am "+name);}

}

CSC142 M 12

Student class
public class Student extends Person{

private double gpa;
public Student(){
// Person() called automatically
gpa = 3.5;}
public Student(String s,int a,double g)

{
//Call the constructor Person (s,a)
super(s,a); //Don't write Person(s,a)
setGPA(g);

}
public void setGPA(double g){
if (g>=0 && g<=4.0) gpa=g;}

public double getGPA(){return gpa;}
}

CSC142 M 13

Using Person and Student

Person p = new Person("Jane",25);
Student s = new Student("Robert",28,3.8);
p.speak(); // a person can speak
s.speak(); // a student can speak, since

// a student is a person

CSC142 M 14

Method overriding
• How can we specialize speak for the Student

class?
• Redefine speak within the Student class
public void speak(){

super.speak();//let the Person speak
// Add what the student say
System.out.println("My gpa is "+gpa);

}

• For any Student instance s, s.speak()
invokes the speak method of the Student
class. This is called method overriding.

CSC142 M 15

this keyword revisited
• this: two uses

• a reference to the current object when within
one of the object instance methods

• Use this(argument list) when calling another
constructor from a constructor (within the same
class). The call must be the first executed
statement in the constructor.

public Person(){
System.out.println
("Default constructor");
this(name,20); /*Error*/}

CSC142 M 16

super keyword
• super: two uses

• a reference to the base object part of the
current derived object within one of the derived
object instance method.
super.speak();//In Student.speak()

• Use super(argument list) when calling a base
constructor from a derived constructor. The call
must be the first executed statement in the
constructor.
super(s,a);//In Student constructor

• Can't chain the super calls
super.super.method();//Error

CSC142 M 17

Constructor calls
• When calling a constructor, Java

• invokes the base class constructor (if
necessary via an implicit call to super()).

• initializes the instance variables of the current
class

• executes the statements in the constructor of
the current class.

public class Derived extends Base{
private int i=3;
public Derived(){i++;}}

Derived d = new Derived();
// call Base(), set i to 3, increment i
// What happens if Base is derived from
// some other class?

CSC142 M 18

Overloading and Overriding
• Method overloading: same name but a different

number or type of arguments.
• A subclass can define some overloaded

methods that augment the inherited
overloaded methods provided by a superclass.

• Method overriding: define a method in the
subclass with the same signature (return type
and arguments) as the inherited method.
• The method in the subclass shadows the

method of the superclass.
• Powerful when dealing with a hierarchy of

objects (polymorphism: next slide)

CSC142 M 19

Polymorphism example
• Consider

Person[] group=new Person[2];

group[0]=new Person("Jane",25);
group[1]=new Student("Bob",26,3.9);
//OK, a Student is a Person
for(int i=0; i<2; i++)
group[i].speak();

// What is printed?

CSC142 M 20

Polymorphism
• If there are several implementations of a

method in the inheritance hierarchy of
an object, the one in the most derived
class always overrides the others.

• This is the case even if we refer to the
object by way of a less derived type.

group[1].speak();
//invokes speak of Student
//even though group is an
// array of type Person[]

CSC142 M 21

Dynamic binding and Polymorphism
• Polymorphism uses dynamic binding

• The selection of the method is done at run
time. The JVM looks at the actual type of the
object referred to.

• In Java, instance methods are by default
dynamic (not the case in C++). To prevent
overriding, declare the method final.

public final void speak()
{ /* speak code in Person */}

• Can’t write in Student class
public void speak(){/* code */}
// Compilation error

CSC142 M 22

Static binding and Overloading
• Overloading uses static binding

• The selection of the method is done at compile
time.

• If in the Student class, we write instead
public void speak(String s){
//overload speak of Person
//takes a String as a formal parameter
super.speak();
System.out.println(s);}

• Then
Person p = new Student();
p.speak(); //invokes Person.speak()

CSC142 M 23

Static methods (1)
• Reminder: static methods are not attached to

any instance of a class. They belong to the
class.

• A static method is invoked by using the class
name. They are bound at compile time
(That's why they are called static)

Math.sqrt(2);
• A static method can't be overridden.

• You can't declare in a subclass as a non
static method a superclass static method.

• However, you can shadow a superclass
static method in the subclass (unless the
superclass method was declared final).

CSC142 M 24

Static methods (2)
public class Base{
public static void foo(){
System.out.println("foo of Base");}

}

public class Derived extends Base{
public void foo(){/*Code*/} // Error
public static void foo(){ // OK
System.out.println("foo of Derived");}

}

CSC142 M 25

final keyword
• final

• When applied to a method, the method can't be
overidden (or shadowed for a static method)

• When applied to a class, the class can't be
inherited.
public final class ThisIsIt{
// class code }

public class MoreOfIt extends ThisIsIt {}
// Error

• None of the methods in a final class are overridden.
The compiler can optimize the use of the class
methods (inlining).

