
CSC 142 F 1

CSC 142

References and Primitives
[Reading chapter 5]

CSC 142 F 2

Review: references and primitives

• Reference: the name of an object. The type 
of the object is defined by a class, e.g. 

Car myCar = new Car("sedan");

//myCar is a reference to an object of

//type Car

• Primitive: a variable to store a simple piece of 
information, such as an integer, a floating 
point number, a character, or a boolean. The 
type is defined by one of the java keywords, 
int, double, char, boolean, etc…
int i = 10; // don't use new

CSC 142 F 3

Memory view
• All program variables are stored in memory. 

Think of memory as a huge pile of boxes. Each 
box is known to the computer by its location 
(=address).

• The memory box of a reference variable 
contains the memory address where the object 
that the variable refers to is stored.

myCar object address

memory for myCar

Car object referred to 
by the variable myCar

memory for the myCar object
• The memory box of a primitive variable 

contains the value of the variable
i 10

memory for i
CSC 142 F 4

Method call

• When calling a method, the values of the actual 
parameters are copied in the formal 
parameters. We say that java calls by value.

• If the actual parameter is

• a primitive: the value of the primitive is copied

• a reference: the value of the reference is 
copied (=address of the object). Actual and 
formal parameters refer to the same object. 

CSC 142 F 5

Example
// foo method
public void foo(StringBuffer sb, int j){

sb.reverse();//reverse the order

j = 2*j;
}

// in some method bar calling foo

int i = 10; 

StringBuffer s = new StringBuffer("Hello");
foo(s,i); 

System.out.println("s="+s+" i="+i);

• What is printed? 

Like the String class. But a StringBuffer
comes with methods to modify its 
content (the content of a String can't be 
modified. String are immutable).

s=olleH i=10 CSC 142 F 6

What is going on?

i s

bar

j sb

foo

Hello

StringBuffer

10 1AEF

address of the 
StringBuffer 
object

10 1AEF

copy the actual parameters in the 
formal parameters

20

X
olleH

X



CSC 142 F 7

Using references and primitives
• An object can be huge in memory

• passing an object to a method by copying 
the object would be prohibitively expensive

• A primitive never uses lots of memory. It can 
be passed as a copy.

• Note: a primitive in one method can't be 
modified by another method when passed as 
an actual parameter to that other method.
• But sometimes we want to do so!
• Answer: store the primitive inside of an 

object (e.g. an array) and call the method 
with a reference to that object as an actual 
parameter. 


