CSC 142

References and Primitives
[Reading chapter 5]

CSC142F1

Review: references and primitives

Reference: the name of an object. The type
of the object is defined by a class, e.g.

Car nyCar = new Car ("sedan");

/InyCar is a reference to an object of

/ltype Car
Primitive: a variable to store a simple piece of
information, such as an integer, a floating
point number, a character, or a boolean. The
type is defined by one of the java keywords,
int, double, char, boolean, etc...

int i =10; // don't use new
CSC142F2

- Car object referred to
myCar | object address | —»

Memory view

All program variables are stored in memory.
Think of memory as a huge pile of boxes. Each
box is known to the computer by its location
(=address).

The memory box of a reference variable
contains the memory address where the object
that the variable refers to is stored.

by the variable myCar

memory for the myCar object
The memory box of a primitive variable
contains the value of the variable

i

memory for i

memory for myCar

CSC142F3

Method call

When calling a method, the values of the actual
parameters are copied in the formal
parameters. We say that java calls by value.
If the actual parameter is

a primitive: the value of the primitive is copied

a reference: the value of the reference is
copied (=address of the object). Actual and
formal parameters refer to the same object.

CSC142F 4

Example

/1 foo method
public void foo(StringBuffer sb, int j){

}

/1 in sone nethod bar calling foo

int i = 10;

StringBuffer s = new StringBuffer("Hello");
foo(s,i);

Systemout. println("s="+s+" i="+i);

What is printed?

sb.reverse();//reverse the order —
io= 20

Like the String class. But a StringBuffer
comes with methods to modify its
content (the content of a String can't be
modified. String are immutable).

s=ol | eH i =10 csc142F5

What is going on?

| _address of the
LAEF StringBuffer
bject
bar /10 / objec
[s o/ H¥llo
copy|the actual paranjeters in the
form@l parameters el olleH
0 StringBuffer
A <4
foo 16 20 1AEF
j sb

CSC142F 6

Using references and primitives

An object can be huge in memory

passing an object to a method by copying
the object would be prohibitively expensive

A primitive never uses lots of memory. It can
be passed as a copy.

Note: a primitive in one method can't be
modified by another method when passed as
an actual parameter to that other method.

But sometimes we want to do so!

Answer: store the primitive inside of an
object (e.g. an array?I and call the method
with a reference to that object as an actual
parameter.

CSC142F7

