CSC 142

Primitive types
[Reading: chapter 5]

CSC142E 1

|dentifiers: review (1)

class, method or variable names
Java is case sensitive
class HelloWorld # class helloWorld
An identifier is composed of
letters, digits, underscores, currency symbol
can't start with a digit
1_Bad, thislsOK, this_is_also_OK_123

can't be a reserved java keyword
private String class; //Error

CSC 142E2

Identifiers: review (2)

Style
class names: capitalize the first letter of
each word in the name, e.g.

class ThislsMyClass

method and variable names: same except
for the first letter which is lowercase, e.g.

myMethod, myVariable
constants (we will see how to declare them)

use capital letters and separate the words
with an underscore, e.g. MAX_VALUE

CSC142E3

Types in Java

Every variable and method has a type
2 categories

primitive types, for simple values that have
built-in functionalities in the language. An
example is an integer value.

reference (or class) types, for objects.

CSC142E4

Primitive types (1)
int for an integer value, e.g. 1, -2 but not
1.334
when coding, write
int i;
i = 2342;
double for a floating point value, e.g.
1.33, -134.2E-10
when coding, write
double x;
x = -2.234;

CSCI42ES5

Primitive types (2)
char for a single keyboard character, e.g. 'a’,
'$', but not 'sara’

when coding, write

char c;
c = 'Q'; /* use single quotes to write a
character explicitly in your program */

some special characters
\t' for tab, "\n' for new line, ...
boolean for the logical value true or false
when coding, write
boolean isSunday;
isSunday = false;

There are other primitive types CsCia2Es
(see later)

final keyword

Sometimes, a variable should not change (e.g.
a mathematical constant such as pi)

To make a variable constant, use final when

declaring it
final double PI=3.1416;

PI =4.; // Error
// PI is a constant
A constant must be initialized when declared
final int DAYS_IN A WEEK;
DAYS_IN A WEEK = 7;
//Error! write final int DAYS_IN_A_ﬁ%ﬁ E7=7;

What about static final?

Any instance of a class has its own instance
fields.

public class Calendar{
public final int NUMBER OF MONTHS=12;
// etc...
}
All Calendar instances have their own copy of
the instance field NUMBER_OF_MONTHS.

Better to have one copy shared by all of the
instances: use the static keyword.
public static final int NUMBER OF MONTHS=12;

We will see other uses of static later

CSC142E8

Doing Arithmetic

Usual arithmetic operations:
unary +,- (e.g. -3 or +2)
binary *, /, + and — (e.g. 2*3)
Between integers, / is the integer division
27/12 is 2 (not 2.25)
% (mod operator): a%b is the remainder of the
division of a by b, e.g. 2
27%12is 3 since 12 [27

49%5 is 4 3
2%3 is 2
6.2%2.9 iS 04 CSC142E9

An example

How many hours, minutes and seconds in
6789 seconds?

The java answer

int seconds=6789;

int hours=seconds/3600;
seconds=seconds$%$3600;

int minutes=seconds/60;
seconds=seconds%60;
System.out.println("6789s="+hours+"h"+
minutes+"mn"+seconds+"s") ;

//prints 6789s=1h53mn9s

CSC142E 10

Order of precedence

What is a+b*c in Java?
Isita + (b*c) or (a+b)*c?
Of course, we expect a+(b*c)
Java uses the following precedence rules
evaluate expressions in parentheses first
(start with the innermost set of parentheses)
to evaluate an expression, do unary —, then
do *,/ and %, and then do binary + and -
Don't hesitate to use parentheses to clarify
your arithmetic expressions.

CSC142E 11

Associativity

What is a/b*c in Java?
Isita/ (b*c) or (a/b)*c?
Of course, we expect (a/b)*c

Java binary arithmetic operators associate left
to right within the same level of precedence.

Note: not all operators associate left to right
What about the assignment =?
Add parentheses to the following expression
to show how it is evaluated
atb/-c*d-e
answer: (a + ((b/(-c))*d))-e CSC1E 12

Shortcuts

op= where op is +,-,*,%, /
x+=a; // same as x=x+a;
x%=b; // same as x=x%b;
post increment and decrement: ++ and --
x++; // post increment: same as x=x+1;
x--; // post decrement: same as x=x-1;
Also pre increment and decrement: ++ and --
++x; //x=x+1; or --x; //x=x-1;
Difference?
post: the variable is updated after being used
pre: the variable is updated before being used
Same if used in isolation. Not the same in an
expression or assignment
int i=0, j=0, a, b;
a=i++; // a is 0 and i is 1
b=++j; // b is 1 and j is 1

CSC 142E 13

Conversions in arithmetic

Java automatically converts types in obvious
cases, e.g.

double x = 3.2;

int i = 8;

System.out.println("x/i="+x/1i) ;

// 3.2/8 is computed as 3.2/8.0 which is 0.4
Be careful

System.out.println(1/2*3.4); // prints 0!
When in doubt, don't let java decide. Java
allows only the most obvious conversions:

int i = 3.0; //Nope! compilation error

Use a cast instead

CSC 142E 14

Casting

Consider
double x = 3.8;
int i = x; // Error!
Convert to an int using a cast, i.e. write
int i = (int)x; //i is 3 (drop fractional part)
Java is strongly typed. It only performs safe
automatic conversions (int to double...). Other
conversions are the programmer's responsibility
Syntax for casting

sometype var;

All java numerical primitive types

integers: int is the most common
in order of increasing capacity:
byte (1 byte: range = -27 to 27-1)
short (2 bytes: range = -25 to 25-1)
int (4 bytes: range = -23! to 23!-1)
long (8 bytes: range = -263 to 263-1)
floating point variables: prefer double

in order of increasing capacity:
float (4 bytes absolute value=1.4x107% to

var = (sometype)expression; 3.4x10%)

/* not always allowed. The compiler will tell double (8 bytes absolute value=4.9x10732¢ to
you (e.g. boolean b = (boolean)3.4; is an 1.8x10308) o
error) */ CSC142E 15 . CSC142E 16
Precision Math class

Java allocates a finite amount of memory to store
a floating point variable
the value may be truncated. Don't always
expect exact results
double x = 1.34%6.24; //=8.3616
// Use the DecimalFormat class to control
// the display of numbers (in java.text.¥)
DecimalFormat d;
// 16 digits after the decimal point
d = new DecimalFormat ("0.0000000000000000") ;
System.out.println("x="+d.format (x)) ;
// prints x=8.3616000000000010

A computer works in base 2. A number may have
a few number of digits in base 10 and a large
number in base 2. If so, the number is truncated.

CSC142E 17

A class that defines mathematical constants and
functions, e.g. (check documentation)

Pl, E, sqrt, cos, sin, tan, exp, log...
// area of a circle

double area = Math.PI*radius*radius;
// square root of a positive number

System.out.println("Square root of 21 is "+
Math.sqrt(21));

// arc tangent of a number
double piOver4 = Math.atan(1);

Don't need to instantiate the Math class to use it

All members of the Math class are declared
static : more on this later

CSCI142E 18

Examples using Math

If x is a double, find the long i that is the closest
tox(e.g.ifxis 3.9,iis4 orif xis -2.2, i is -2)
Without the Math class
if (x>=0)
i = (long) (x+0.5);//(long) (3.940.5) is 4
else
i = (long) (x-0.5);//(long) (-2.8-0.5) is -3
With the Math class
i = Math.round(x);
generate a random integer >=10 and <20
(int) (Math.random() *10+10) ;

//random returns a random double >=0 and < 1
CSC142E 19

More about char and boolean

booleans: boolean (1 bit true or false)
characters: char (2 bytes Unicode)
stored on 2 bytes
each char has its own code (2 byte number)
'A'is 65, 'a'is 92, '@' is 64
allows to compare characters ('b'<'m' is true)

2 bytes is large enough to allow the coding of
most characters appearing in all human
languages (2'6=65536)

CSC 142 E 20

Primitive types as instance fields

An instance field is automatically initialized to a
default value (of course, the value can then be
changed by any method of the class).

null if it has a class type

what if it has a primitive type?
0 for numbers (int, double...)
\0' for char

false for boolean
public class SomeClass{
private int x; //x initialized to 0

// more code...

} CSC 142 E21

Wrapper classes

What if we want to treat a primitive type as an
object?
use a type Wrapper

classes Integer, Double, Character, Boolean,
etc...

int someInt = 32;

Integer myInt = new Integer (somelnt);
Use: some methods always take an object as
input (e.g. in Vector class). Can't use them
with a primitive type. But OK with a wrapper
class. See later when dealing with collections.

CSC142E22

Boxing / Unboxing

Since JDK 1.5, Java can automatically cast a
primitive type to its associated wrapper type
(boxing), or cast a wrapper type to its
associated primitive type (unboxing).

Integer i = 3; // boxing

int k = i; // unboxing
Convenient for algorithms that require
reference types.
Boxing / unboxing blurs the distinction between
primitive types and reference types, but doesn’t
eliminate it.

CSC 142 E 23

