
CSC 142 E 1

CSC 142

Primitive types
[Reading: chapter 5]

CSC 142 E 2

Identifiers: review (1)
• class, method or variable names
• Java is case sensitive

• class HelloWorld ≠ class helloWorld
• An identifier is composed of

• letters, digits, underscores, currency symbol
• can't start with a digit
• 1_Bad, thisIsOK, this_is_also_OK_123
• can't be a reserved java keyword

private String class; //Error

CSC 142 E 3

Identifiers: review (2)
• Style

• class names: capitalize the first letter of
each word in the name, e.g.
class ThisIsMyClass

• method and variable names: same except
for the first letter which is lowercase, e.g.
myMethod, myVariable

• constants (we will see how to declare them)
use capital letters and separate the words
with an underscore, e.g. MAX_VALUE

CSC 142 E 4

Types in Java
• Every variable and method has a type
• 2 categories

• primitive types, for simple values that have
built-in functionalities in the language. An
example is an integer value.

• reference (or class) types, for objects.

CSC 142 E 5

Primitive types (1)
• int for an integer value, e.g. 1, -2 but not

1.334
• when coding, write
int i;
i = 2342;

• double for a floating point value, e.g.
1.33, -134.2E-10
• when coding, write
double x;
x = -2.234;

CSC 142 E 6

Primitive types (2)
• char for a single keyboard character, e.g. 'a',

'$', but not 'sara'
• when coding, write

char c;
c = '@'; /* use single quotes to write a
character explicitly in your program */

• some special characters
•'\t' for tab, '\n' for new line, …

• boolean for the logical value true or false
• when coding, write
boolean isSunday;
isSunday = false;

• There are other primitive types
(see later)

CSC 142 E 7

final keyword
• Sometimes, a variable should not change (e.g.

a mathematical constant such as pi)
• To make a variable constant, use final when

declaring it
final double PI=3.1416;
...
PI = 4.; // Error

// PI is a constant

• A constant must be initialized when declared
final int DAYS_IN_A_WEEK;
DAYS_IN_A_WEEK = 7;
//Error! write final int DAYS_IN_A_WEEK =7; CSC 142 E 8

What about static final?
• Any instance of a class has its own instance

fields.
public class Calendar{
public final int NUMBER_OF_MONTHS=12;
// etc...
}

• All Calendar instances have their own copy of
the instance field NUMBER_OF_MONTHS.

• Better to have one copy shared by all of the
instances: use the static keyword.

public static final int NUMBER_OF_MONTHS=12;

• We will see other uses of static later

CSC 142 E 9

Doing Arithmetic
• Usual arithmetic operations:

unary +,- (e.g. –3 or +2)
binary *, /, + and – (e.g. 2*3)

• Between integers, / is the integer division
27/12 is 2 (not 2.25)

• % (mod operator): a%b is the remainder of the
division of a by b, e.g.

49%5 is 4
2%3 is 2
6.2%2.9 is 0.4

12 27
2

3
27%12 is 3 since

CSC 142 E 10

An example
• How many hours, minutes and seconds in

6789 seconds?
• The java answer

int seconds=6789;
int hours=seconds/3600;
seconds=seconds%3600;
int minutes=seconds/60;
seconds=seconds%60;
System.out.println("6789s="+hours+"h"+
minutes+"mn"+seconds+"s");
//prints 6789s=1h53mn9s

CSC 142 E 11

Order of precedence
• What is a+b*c in Java?

• Is it a + (b*c) or (a+b)*c?
• Of course, we expect a+(b*c)

• Java uses the following precedence rules
• evaluate expressions in parentheses first

(start with the innermost set of parentheses)
• to evaluate an expression, do unary –, then

do *,/ and %, and then do binary + and -
• Don't hesitate to use parentheses to clarify

your arithmetic expressions.
CSC 142 E 12

Associativity
• What is a/b*c in Java?

• Is it a / (b*c) or (a/b)*c?
• Of course, we expect (a/b)*c

• Java binary arithmetic operators associate left
to right within the same level of precedence.

• Note: not all operators associate left to right
• What about the assignment =?

• Add parentheses to the following expression
to show how it is evaluated
• a+b/-c*d-e
• answer: (a + ((b/(-c))*d))-e

CSC 142 E 13

Shortcuts
• op= where op is +,-,*,%, /

x+=a; // same as x=x+a;
x%=b; // same as x=x%b;

• post increment and decrement: ++ and --
x++; // post increment: same as x=x+1;
x--; // post decrement: same as x=x-1;

• Also pre increment and decrement: ++ and --
++x; //x=x+1; or --x; //x=x-1;
• Difference?

• post: the variable is updated after being used
• pre: the variable is updated before being used
• Same if used in isolation. Not the same in an

expression or assignment
int i=0, j=0, a, b;
a=i++; // a is 0 and i is 1
b=++j; // b is 1 and j is 1

CSC 142 E 14

Conversions in arithmetic
• Java automatically converts types in obvious

cases, e.g.
double x = 3.2;
int i = 8;
System.out.println("x/i="+x/i);
// 3.2/8 is computed as 3.2/8.0 which is 0.4

• Be careful
System.out.println(1/2*3.4); // prints 0!

• When in doubt, don't let java decide. Java
allows only the most obvious conversions:
int i = 3.0; //Nope! compilation error

• Use a cast instead

CSC 142 E 15

Casting
• Consider

double x = 3.8;
int i = x; // Error!

• Convert to an int using a cast, i.e. write
int i = (int)x; //i is 3 (drop fractional part)

• Java is strongly typed. It only performs safe
automatic conversions (int to double…). Other
conversions are the programmer's responsibility.

• Syntax for casting
sometype var;
var = (sometype)expression;
/* not always allowed. The compiler will tell
you (e.g. boolean b = (boolean)3.4; is an
error) */ CSC 142 E 16

All java numerical primitive types
• integers: int is the most common
• in order of increasing capacity:

byte (1 byte: range = –27 to 27-1)
short (2 bytes: range = –215 to 215-1)
int (4 bytes: range = –231 to 231-1)
long (8 bytes: range = –263 to 263-1)

• floating point variables: prefer double
• in order of increasing capacity:

float (4 bytes absolute value=1.4x10-45 to
3.4x1038)

double (8 bytes absolute value=4.9x10-324 to
1.8x10308)

CSC 142 E 17

Precision
• Java allocates a finite amount of memory to store

a floating point variable
• the value may be truncated. Don't always

expect exact results
double x = 1.34*6.24; //=8.3616
// Use the DecimalFormat class to control
// the display of numbers (in java.text.*)
DecimalFormat d;
// 16 digits after the decimal point
d = new DecimalFormat("0.0000000000000000");
System.out.println("x="+d.format(x));
// prints x=8.3616000000000010

• A computer works in base 2. A number may have
a few number of digits in base 10 and a large
number in base 2. If so, the number is truncated.

CSC 142 E 18

Math class
• A class that defines mathematical constants and

functions, e.g. (check documentation)
•PI, E, sqrt, cos, sin, tan, exp, log…

// area of a circle
double area = Math.PI*radius*radius;
// square root of a positive number
System.out.println("Square root of 21 is "+
Math.sqrt(21));

// arc tangent of a number
double piOver4 = Math.atan(1);

• Don't need to instantiate the Math class to use it
•All members of the Math class are declared

static : more on this later

CSC 142 E 19

Examples using Math
• If x is a double, find the long i that is the closest

to x (e.g. if x is 3.9, i is 4 or if x is –2.2, i is –2)
•Without the Math class

if (x>=0)
i = (long)(x+0.5);//(long)(3.9+0.5) is 4

else
i = (long)(x-0.5);//(long)(-2.8-0.5) is -3

•With the Math class
i = Math.round(x);

• generate a random integer >=10 and <20
(int)(Math.random()*10+10);
//random returns a random double >=0 and < 1

CSC 142 E 20

More about char and boolean
• booleans: boolean (1 bit true or false)
• characters: char (2 bytes Unicode)
• stored on 2 bytes
• each char has its own code (2 byte number)
•'A' is 65, 'a' is 92, '@' is 64
•allows to compare characters ('b'<'m' is true)

• 2 bytes is large enough to allow the coding of
most characters appearing in all human
languages (216=65536)

CSC 142 E 21

Primitive types as instance fields
• An instance field is automatically initialized to a

default value (of course, the value can then be
changed by any method of the class).
• null if it has a class type
•what if it has a primitive type?
•0 for numbers (int, double…)
•'\0' for char
•false for boolean
public class SomeClass{
private int x; //x initialized to 0
// more code...

}
CSC 142 E 22

Wrapper classes
• What if we want to treat a primitive type as an

object?
• use a type Wrapper
• classes Integer, Double, Character, Boolean,

etc…
int someInt = 32;
Integer myInt = new Integer(someInt);

• Use: some methods always take an object as
input (e.g. in Vector class). Can't use them
with a primitive type. But OK with a wrapper
class. See later when dealing with collections.

CSC 142 E 23

Boxing / Unboxing
• Since JDK 1.5, Java can automatically cast a

primitive type to its associated wrapper type
(boxing), or cast a wrapper type to its
associated primitive type (unboxing).
• Integer i = 3; // boxing
int k = i; // unboxing

• Convenient for algorithms that require
reference types.

• Boxing / unboxing blurs the distinction between
primitive types and reference types, but doesn’t
eliminate it.

