
CSC 142 D 1

CSC 142

Instance methods
[Reading: chapter 4]

CSC 142 D 2

Motivation

• Divide and conquer
• Break up a complex task into a set of tasks.
• Each simpler task is coded in a separate

method.
• Simplify the development of code (faster, less

bugs).

CSC 142 D 3

An illustration
• Drawing a mountain landscape

public void drawLandscape()
{
drawMountainRange();
drawChalet();
drawTrees();
}

• What the method does is obvious
• How it does it is relegated in the methods

drawMountainRange(),…

CSC 142 D 4

Defining a method
• e.g.,

public boolean isAHoliday(Date d){/*code*/}
• Inside of a class block {}
• Start with the access modifier (public or private)
• Follow with the type of the method
• e.g. if the method returns an int, write int

for the type of the method
• Follow with the method name
• first word: lowercase, others: capitalize the

1st letter.
• Follow with the list of formal parameters inside

()
• The method code is written between { and }

CSC 142 D 5

Access modifier: public
• The method is part of the class interface
• Anyone using the class can access the method

// file MyClass.java
public class MyClass{
public void sayHello()
{ System.out.println("Hello");}
// constructor and other methods...

}
// for any user of MyClass
MyClass mc = new MyClass();
mc.sayHello(); //OK, sayHello is public

CSC 142 D 6

Access modifier: private
• The method is part of the class implementation
• The method can only be accessed within the

class
// file MyClass.java
public class MyClass{
private void sayHello(){
System.out.println("Hello");
}
public void saySomething(){
sayHello(); // OK
}

}
// file OtherClass.java
public class OtherClass{
public void doSomething(){
MyClass mc = new MyClass();
mc.sayHello(); //Oups! Doesn’t compile

}
}

CSC 142 D 7

void return value

• If the method doesn't send back a result, use
void as the type of the method
public void printWelcome()

{

System.out.println("Welcome to Java!");

return; // optional statement

}

CSC 142 D 8

Returning a value
• The method sends 'something' back to whoever

called it. That 'something' (=a result in some
form) has a type. The type must appear next to
the method name, e.g.
public boolean isZero(int val)
{
// is val 0?
if (val==0)
return true;

else
return false;

}

The method is of type boolean
since it returns a boolean (true
or false).

CSC 142 D 9

Formal and actual parameters
• Store in the formal parameters the input values

sent to the method, e.g. in class Output:
public void printInfo(String name, int age)
{

System.out.println("My name is " + name +
". I am "+age+" years old.");

}

formal parameters

actual parameters
• actual parameters: what is sent to the method

Output output = new Output();
output.printInfo("Sandra",26);
//prints My name is Sandra. I am 26 years old.

• If no input, write methodName() CSC 142 D 10

Rule for calling a method (1)
• Actual and formal parameters must match

• in number
• in type
• in order

//OK
output.printInfo("Sandra",26);
//Oups! wrong order
output.printInfo(26,"Sandra");

// Boom! wrong number
output.printInfo(26);

// No way! 26.5 is not an int
output.printInfo("Sandra",26.5);

CSC 142 D 11

Rule for calling a method (2)
• Actual and formal parameters don't have to

match by name, e.g.
// In the Output class
public void printInfo(String name,int age)
{
System.out.println("My name is " + name +
". I am "+age+" years old.");

}
// in some other method in some other class
String someName = "David";
int someAge = 11;
Output output = new Output();
output.printInfo(someName,someAge); // OK

CSC 142 D 12

Control flow (1)
public class CalendarUtil {
public boolean isLeapYear(int year)
{ /*code*/ }
/* constructor and other methods... */}

public class MyClass{
private CalendarUtil cu = new CalendarUtil();
public void checkBirthYear(int birthYear){
if (cu.isLeapYear(birthYear))
System.out.println("Born on a leap year");

}
}

• What happens when checkBirthYear(1988) is
executed?

CSC 142 D 13

Control flow (2)
• Execute checkBirthYear(1988)

• initialize birthYear to 1988
• evaluate the condition in if statement: need to

call the instance method isLeapYear of cu, with
an actual parameter equal to 1988

• Leave checkBirthYear, start executing isLeapYear
• initialize year to 1988
• execute the code in isLeapYear: should return

true
• Leave isLeapYear with the value true. Resume

execution in checkBirthYear.
• The if condition is true: print "Born on a leap year"

CSC 142 D 14

Control flow (3)
• Inside a method, code is executed top down,

statement by statement, unless
• another method is called: move the control

flow to that method
• a return statement is encountered: move the

control flow to the caller of the method (if non
void return, send back a value as well).

• an if statement is encountered: skip
statements in if block (false condition) or, if
there is an else, in else block (true condition)

• a loop is encountered: repeat some statements
several times (see later).

CSC 142 D 15

pre and post conditions
• Document the methods. One approach: use

• preconditions: what must be true to call the
method

• postconditions: what is true when done
executing the method

• e.g. to describe boolean isLeapYear(int year)
/* precondition: year > =1752 (when the
gregorian calendar was adopted in England) */

/* postcondition:
result==(year is a leap year) */

• Could have used javadoc comments /** and */
CSC 142 D 16

Defining variables (1)
• As an instance field: within a class outside

any method. The field is visible throughout
the class and beyond if declared public.

• As a local variable: within a method.
public int foo(double x)
{
int i;
// some more code

}

• x and i can be used only between { and }
defining foo. x and i are local to foo.

CSC 142 D 17

Defining variables (2)
• What is the difference between x and i?

• x is a formal parameter. It is automatically
initialized when foo is called. It receives the value
of the actual parameter, e.g.
int someInt = foo(3.2); // in foo, for this call x is 3.2

• i is not automatically initialized. In Java, a local
variable used without having been initialized
generates a compilation error.
public int foo(double x) {

int i;
if (x > 10.)
return i; /* error: What is i ? */
else
return –i; /* error: What is i ? */

} CSC 142 D 18

Local variable scope
• Where the variable is visible (in other words

where it can be used)
• A local variable is only visible within the block

where it is declared.
public void foo()
{
int i=2;
{ // inner bloc

i=3; //OK
String s = "abc"; //OK

} // end inner block
s="def";
//error! s visible only in inner block

}

CSC 142 D 19

Variable lifetime
• Local variable (within a method)

• Created when the declaration line is executed.
• Destroyed when exiting the block where the

variable was declared (the memory used by
the variable is reclaimed).
If it is a reference, is the object garbage
collected? No, if there is another reference to
the object. Yes, if there is no other reference of
the object.

• Instance variable
• Created when the object is constructed
• Destroyed when the object is destroyed

CSC 142 D 20

this keyword (1)
• An instance method of a class is always called

using an instance of the class, e.g.
window.add(circle);

• The instance object is not part of the actual
parameter list. However, it is still passed to
the method implicitly.

• It can't appear in the formal parameter list
• To refer to the object used to make the call,

use the keyword this.

CSC 142 D 21

Using this: an example (1)
• In an instance method, access the object implicitly

passed to that method with the this keyword.
public class SomeClass{
private int var;
public void changeVar(int n){
this.var = n;/*OK, but superfluous*/}

}

• Could also do
public void changeVar(int var)
{this.var=var;}

var is local to changeVar. Since the name is the same as
the instance variable var, we need to use this to refer to
the instance variable var (potentially confusing).
The local variable shadows the instance variable. CSC 142 D 22

Using this: an example (2)
• In an instance method, any reference to an

instance field or any call to another instance
method done without an explicit reference uses
the implicit object.
public class Bar{
public void foo1(){/*code*/}
public void foo2()
{
foo1(); // call the instance method foo1

// of the implicit object.
// same as this.foo1();

}
}

CSC 142 D 23

Using this: another example
• Consider a Clock class to model a clock.

Clock has a method tick to add 1 second to
the time.
Clock clock = new Clock(); //0h0mn0s
clock.tick(); // 0h0mn1s

• What if we want to write
clock.tick().tick(); // add 2 seconds

• Define tick as
public Clock tick()
{
/* code to add one second to the current
time... */
return this;
}

CSC 142 D 24

Program organization
• Define the classes: one java file per class
• For each class, define the instance fields and

methods.
• Inside of each method, define local variables

as needed.
• What about import?

• used to access libraries organized in
packages.

• can also define our own packages when
defining new classes. Not needed for simple
programs.

• In practice, classes that are defined within the
same folder can access one another without
using any import.

