CSC 142

Object based programming in
Java

[Reading: chapter 2-3]

cscla2cl

What we have seen so far

A class is made of
instance fields: attributes of the class objects
instance methods: behavior of the class
objects (=what objects can do).
instance methods+fields=instance members
Some members are public (available to
anyone=interface), some are private
(available inside of the class
only=implementation details)
To create an object of the class type, use

ClassName myObject = new ClassName() ;
//creates an instance of ClassNahie*“*’

Another example

import java.awt.Color; // Color class
import uwcse.graphics.*;

public class SomeGraphics{
// instance fields
private GWindow window=new GWindow () ;
private Oval circlel=new Oval();
private Oval circle2=new Oval();
// constructor
public SomeGraphics () {
// circlel is blue, circle2 red
circlel.setColor (Color.blue) ;
circle2.setColor (Color.red) ;
// move circle2 to the right by 80 pixels
circle2.moveBy (80,0) ;
window.add (circlel) ;
window.add (circle2) ;

} €SC142C3

java.awt

A (huge) package to do graphics (awt stands for
abstract windowing toolkit)
Color is a class that contains some predefined
colors (you can also define your own colors,
check the class documentation)
We could have also written to import the full
package
import java.awt.”;
Note: With the above, we get access to all the
classes in java.awt, but not the content of any
package in java.awt

CSC142C4

Initializing instance fields

Initializing means giving a value to something for
the first time.
Instance fields can be directly initialized when
declared

private Oval circlel = new Oval();
If not, an instance field referring to an object is
automatically initialized to null

private GWindow w; // w is null
Using a null reference to call a method is an
error.
w.doRepaint(); // error!
Note: doRepaint means redisplay the window
Before using an instance field, make sure that it
refers to an actual object. escuzces

references and assignment (1)

Consider

public SomeGraphics () {
// circlel is blue, circle2 red
circlel.setColor (Color.blue) ;
circle2.setColor (Color.red) ;
// move circle2 to the right by 80 pixels
circle2.move (80,0) ;
circle2 = circlel;
window.add (circlel) ;
window.add (circle2) ;

}
What happens?

CSC142C6

references and assignment (2)

Before executing circle2 = circle1

circle1—| circle1:Oval
circle2—{ circle2:Oval

circle2 = circle1
circle1 —’ - same object, drop the
object reference in the

circle2—x—|circle2:Oval| UML notation

The object that circle2 referred to can't be
accessed anymore. The memory it uses is
freed by the JVM garbage collector.

Note: if 2 or more
references refer to the

Only 1 blue circle appears in window csciecr

Swapping colors (1)

Add an instance method to the SomeGraphics
class to swap the colors of the 2 circles

method swapColors: make it public

swapColors doesn't require any input. Write
swapColors()

swapColors doesn't give back a result. Write
void to the left of the method name.
public void swapColors ()

{
// what should we write?

}

CsC142C8

Swapping colors (2)
Is this OK?

Color colorl = circlel.getColor() ;
Color color2 = circle2.getColor() ;
colorl = color2; // line 1

color2 = colorl; // line 2
circlel.setColor (colorl) ;
circle2.setColor (color2) ;

color1 —| color1:Color
Before line 1 and 2
color2 —| color2:Color efore fine T.an

color1
color2 —- Afterline 1and 2 .

Swapping colors (3)
Need a 3 variable: replace line 1 and 2 with
Color temp = color2; // line 1

color2 = colorl; // line 2
colorl = temp; // line 3

color2 ;
color1—{ color1:Color temp > after line 1
color2 .
color1 |:Color| temp —|temp:Color | after line 2
color1 .
color2—| color2:Color temp > after line 3

csci142c 10

Swapping colors: code

public class SomeGraphics{
// instance fields, constructor as before...
public void swapColors ()

{

// colors of the circles

Color colorl=circlel.getColor() ;

Color color2=circle2.getColor();

color1, color2
and temp are

// swap the colors
Color temp = color2;
color2 = colorl; defined inside
colorl = temp; of the method.
// repaint with the new colors They are called
circlel.setColor(colorl); local variables.
circle2.setColor(color2) ; More on this
window.doRepaint() ; later.

} cscula2cC11

Designing classes

Example: a library member
The problem (unrealistically simple):
Library member identified with SSN
Only one book can be borrowed
No time limit to return a book
Book identified by its title
Analyze the problem
nouns=objects, e.g. library member, book,
SSN
verbs=methods, e.g. borrow, return csciacn

LibaryMember class

Two private instance fields
ssn

LibraryMember
book
Three public methods | SsSP
book
constructor
returnBook LibraryMember
borrowBook returnBook
borrowBook

The class diagram is incomplete (e.g., no type for
the instance fields, no information about the
methods)

CSC142C 13

Instance field: ssn

An integer: int .

In Java, for efficiency reasons, some types are
not object types: boolean for logical variables
(true, false), int for integers (e.g., -1, 36,...),
double for floating point numbers (e.g., 1.134,
0.23e-11,...), char for characters (e.g. 'a’, '!', ..
write

int ssn; // with the instance fields

ssn = 27182813; // e.g. in the constructor

// don't use new

More on this later.

CSC142C 14

)

Instance field: book

need a Book class
instance field: title of type String (class
available in java to manipulate text)
instance method: constructor.
To construct a book, need a String for the title.
Pass the String as a parameter to the

Interlude: String class

Available in the package java.lang
Using String objects

for String literals, use double quotes
"Washington State"

to create a String, use a String constructor
String country = new String("USA");

constructor. Book how is this different?
- - String country = "USA";
String title to get the number of characters in a String
int n = state.length(); // n is 5 if
// state is "Idaho"
Book(Stri
0ok(String) cscres Check the documentation escrcs

Book class LibraryMember class constructor

import java.lang.String;
// unnecessary. java.lang.* is always imported.

public class Book{
private String title;
public Book (String bookTitle)
{
// use the String constructor
title = new String(bookTitle) ;
// Does title=bookTitle do the same thing?
}
}

To instantiate the Book class

Book someBook = new Book("The grapes of wrath");
cscu142C17

To construct a LibraryMember, need an ssn

The constructor needs an input parameter,
namely an int.

Initially, the LibraryMember has not borrowed a
Book. book should be null.

Code (inside the LibraryMember class)
public LibraryMember (int someSSN)
{
ssn = someSSN;
// Do we need to set book to null?
}

Csc142C 18

Instance method: returnBook (1)

Input: none
Output: did the operation succeed? (need to
have a book initially). Return a boolean (true if
success, false if failure).
Code (inside the LibraryMember class)

public boolean returnBook ()

{
// What do we write?

Can the LibraryMember return a Book?
Yes, if book is not null: set book to null
No, if book is null. escua2co

Conditionals: a first view

(_;eneral ?tr.ucm re condition must be a boolean. It
if (conditien) is an error to omit the
 { parentheses

statementl;
executed if

statement2; -
condition is true

1

else /*can be omitted if no else case*/

—1{
statement3; executed if
statement4; condition is false

Y it there is only one statement after the if or the
— else, the braces { and } after the if or the else
may be Omitted, CcsC142C20

Equality and relational operators

All relations are boolean expressions. They
evaluate to true or false.

It is a syntax error

equal and not equal to write.a condition
) as x=y instead of
x ==y //is x equal to y? x==y
x =y /lis x not equal to y?
ordering

x <y /lis x less than y?

x >=y /| is x greater than or equal to y?
x >y /lis x greater than y?

x <=y // is x less than or equal to y?

CSC142C21

What can you compare?

use ==, I=, <=, >= <, and > with numbers and
characters (e.g., int, double, char). With
booleans only == and != are valid.

Don't compare objects with ==, I=, ...except
when comparing to null. See later.

CsC142C22

Instance method: returnBook(2)

Write within the LibraryMember class
public boolean returnBook ()
{
if (book '= null) //There is a book
{
book=null;
System.out.println("book returned") ;
return true;
}
else // There is no book
{
System.out.println("Can't return a book");
System.out.println("You don't have a book") ;
return false;
} CSC142C 23
1

Console output in Java

Use the out object in java.lang.System
System: a class to access low level system objects and
methods (e.g. I/O functionalities)
out: PrintStream object. It comes with methods to
display text in a console window (i.e., not a graphics
window), e.g.

print: printa String

println: same as print but add a newline
// The following prints Hello, world!
System.out.print("Hello, ");
System.out.print("world!") ;
// The following prints Hello on one line and
// Good bye on the next line
System.out.println("Hello") ;
System.out.println("Good bye") ;

€sCl142C24

return statement

In a method
syntax return expression;

expression must have the same type as the
method.

transfer the control flow back to the line of
code that called this method.

appVersion()

"he expression next to the
return keyword must be a
Strlng CSC142C25

Instance method: borrowBook (1)

Input: title of the book to borrow

Output: did the operation succeed? (only one
book can be borrowed). Return a boolean (true
if success, false if failure).

Code (inside the LibraryMember class)

public boolean borrowBook (String someTitle)

{
// What do we write?

Can the LibraryMember borrow a Book?
Yes, if book is null. No, if book is not null.

CSC 142C 26

Instance method: borrowBook (2)

Code (inside the LibraryMember class)
public boolean borrowBook (String someTitle) {
if (book==null) {
// Can borrow the book
book = new Book (someTitle) ;
// Note the use of + to concatenate Strings
System.out.println("Borrow " + someTitle) ;
return true;
}
else {
// Can't borrow the book
// Note '\n' to print a new line
System.out.println("You can't borrow "+
someTitle +"\nYou already have a book") ;
return false;
} CcSC142C27

}

Putting it all together (1)

class diagrams: + for public, - for private

LibraryMember Book
~int ssn - String title
- Book book

+ Book(String)

+ LibraryMember(int)
+ boolean returnBook()
+ boolean borrowBook(String)

CSC142C28

Putting it all together (2)

public class LibraryMember{
// id and borrowed book

private int ssn;

private Book book;
// constructor

public LibraryMember (int someSSN) {ssn=someSSN; }
// other methods (see previous slides)

public boolean returnBook () {/*code*/}

public boolean borrowBook (String someTitle)

{

// code
}

CSC142C29

Using the class LibraryMember

public class UsingLibraryMember{
public void testLibraryMember ()
{
// Borrow and return and see if it works
LibraryMember lm=new LibraryMember (123456789) ;
1m.borrowBook ("The great Gatsby");
if (1lm.returnBook())
System.out.println ("It is working");
if (lm.borrowBook ("The old man and the sea"))
System.out.println("It is still working");
1m.borrowBook ("Learning Java") ;
1m.returnBook () ;
1m.returnBook () ;
1m.borrowBook ("Learning Java") ;

} CSC 142 C 30

