
CSC 142 C 1

CSC 142

Object based programming in
Java

[Reading: chapter 2-3]

CSC 142 C 2

What we have seen so far
• A class is made of

• instance fields: attributes of the class objects
• instance methods: behavior of the class

objects (=what objects can do).
• instance methods+fields=instance members
• Some members are public (available to

anyone=interface), some are private
(available inside of the class
only=implementation details)

• To create an object of the class type, use
ClassName myObject = new ClassName();
//creates an instance of ClassName

CSC 142 C 3

Another example
import java.awt.Color; // Color class
import uwcse.graphics.*;

public class SomeGraphics{
// instance fields
private GWindow window=new GWindow();
private Oval circle1=new Oval();
private Oval circle2=new Oval();
// constructor
public SomeGraphics(){
// circle1 is blue, circle2 red
circle1.setColor(Color.blue);
circle2.setColor(Color.red);
// move circle2 to the right by 80 pixels
circle2.moveBy(80,0);
window.add(circle1);
window.add(circle2);

}
} CSC 142 C 4

java.awt
• A (huge) package to do graphics (awt stands for

abstract windowing toolkit)
• Color is a class that contains some predefined

colors (you can also define your own colors,
check the class documentation)

• We could have also written to import the full
package
• import java.awt.*;
• Note: With the above, we get access to all the

classes in java.awt, but not the content of any
package in java.awt

CSC 142 C 5

Initializing instance fields
• Initializing means giving a value to something for

the first time.
• Instance fields can be directly initialized when

declared
private Oval circle1 = new Oval();

• If not, an instance field referring to an object is
automatically initialized to null

private GWindow w; // w is null

• Using a null reference to call a method is an
error.
w.doRepaint(); // error!
Note: doRepaint means redisplay the window

• Before using an instance field, make sure that it
refers to an actual object. CSC 142 C 6

references and assignment (1)
• Consider

public SomeGraphics(){
// circle1 is blue, circle2 red
circle1.setColor(Color.blue);
circle2.setColor(Color.red);
// move circle2 to the right by 80 pixels
circle2.move(80,0);
circle2 = circle1;
window.add(circle1);
window.add(circle2);

}

• What happens?

CSC 142 C 7

references and assignment (2)
• Before executing circle2 = circle1

circle1 circle1:Oval

circle2 circle2:Oval

• circle2 = circle1
circle1 :Oval

circle2 circle2:OvalX

• The object that circle2 referred to can't be
accessed anymore. The memory it uses is
freed by the JVM garbage collector.

• Only 1 blue circle appears in window

Note: if 2 or more
references refer to the
same object, drop the
object reference in the
UML notation

CSC 142 C 8

Swapping colors (1)
• Add an instance method to the SomeGraphics

class to swap the colors of the 2 circles
• method swapColors: make it public
• swapColors doesn't require any input. Write

swapColors()
• swapColors doesn't give back a result. Write

void to the left of the method name.
public void swapColors()

{

// what should we write?

}

CSC 142 C 9

Swapping colors (2)
• Is this OK?

Color color1 = circle1.getColor();
Color color2 = circle2.getColor();
color1 = color2; // line 1
color2 = color1; // line 2
circle1.setColor(color1);
circle2.setColor(color2);

color1 color1:Color

color2 color2:Color
Before line 1 and 2

color1

color2 :Color After line 1 and 2
CSC 142 C 10

Swapping colors (3)
• Need a 3rd variable: replace line 1 and 2 with

Color temp = color2; // line 1
color2 = color1; // line 2
color1 = temp; // line 3

color1 color1:Color
color2
temp :Color after line 1

color2
color1 :Color temp temp:Color after line 2

color2 color2:Color
color1
temp :Color after line 3

CSC 142 C 11

Swapping colors: code
public class SomeGraphics{

// instance fields, constructor as before...
public void swapColors()
{
// colors of the circles
Color color1=circle1.getColor();
Color color2=circle2.getColor();
// swap the colors
Color temp = color2;
color2 = color1;
color1 = temp;
// repaint with the new colors
circle1.setColor(color1);
circle2.setColor(color2);
window.doRepaint();
}

}

color1, color2
and temp are
defined inside
of the method.
They are called
local variables.
More on this
later.

CSC 142 C 12

Designing classes
• Example: a library member

• The problem (unrealistically simple):
Library member identified with SSN
Only one book can be borrowed
No time limit to return a book
Book identified by its title

• Analyze the problem
nouns=objects, e.g. library member, book,

SSN
verbs=methods, e.g. borrow, return

CSC 142 C 13

LibaryMember class
• Two private instance fields

• ssn
• book

• Three public methods
• constructor
• returnBook
• borrowBook

LibraryMember

ssn
book

LibraryMember
returnBook
borrowBook

The class diagram is incomplete (e.g., no type for
the instance fields, no information about the
methods)

CSC 142 C 14

Instance field: ssn
• An integer: int .
• In Java, for efficiency reasons, some types are

not object types: boolean for logical variables
(true, false), int for integers (e.g., -1, 36,…),
double for floating point numbers (e.g., 1.134,
0.23e-11,…), char for characters (e.g. 'a', '!', …)

• write
int ssn; // with the instance fields
ssn = 27182813; // e.g. in the constructor

// don't use new

• More on this later.

CSC 142 C 15

Instance field: book
• need a Book class

• instance field: title of type String (class
available in java to manipulate text)

• instance method: constructor.
To construct a book, need a String for the title.
Pass the String as a parameter to the
constructor.

Book

String title

Book(String)
CSC 142 C 16

Interlude: String class
• Available in the package java.lang
• Using String objects

• for String literals, use double quotes
"Washington State"

• to create a String, use a String constructor
String country = new String("USA");

• how is this different?
String country = "USA";

• to get the number of characters in a String
int n = state.length(); // n is 5 if

// state is "Idaho"

• Check the documentation

CSC 142 C 17

Book class
import java.lang.String;
// unnecessary. java.lang.* is always imported.

public class Book{
private String title;
public Book(String bookTitle)
{

// use the String constructor
title = new String(bookTitle);
// Does title=bookTitle do the same thing?

}
}

• To instantiate the Book class
Book someBook = new Book("The grapes of wrath");

CSC 142 C 18

LibraryMember class constructor
• To construct a LibraryMember, need an ssn
• The constructor needs an input parameter,

namely an int.
• Initially, the LibraryMember has not borrowed a

Book. book should be null.
• Code (inside the LibraryMember class)

public LibraryMember(int someSSN)
{
ssn = someSSN;
// Do we need to set book to null?
}

CSC 142 C 19

Instance method: returnBook (1)
• Input: none
• Output: did the operation succeed? (need to

have a book initially). Return a boolean (true if
success, false if failure).

• Code (inside the LibraryMember class)
public boolean returnBook()
{
// What do we write?
...

• Can the LibraryMember return a Book?
• Yes, if book is not null: set book to null
• No, if book is null. CSC 142 C 20

Conditionals: a first view
• General structure

if (condition)
{

statement1;
statement2;

}
else /*can be omitted if no else case*/
{

statement3;
statement4;

}

condition must be a boolean. It
is an error to omit the
parentheses

executed if
condition is false

executed if
condition is true

If there is only one statement after the if or the
else, the braces { and } after the if or the else
may be omitted.

CSC 142 C 21

Equality and relational operators
• All relations are boolean expressions. They

evaluate to true or false.
• equal and not equal

x == y // is x equal to y?
x != y // is x not equal to y?

It is a syntax error
to write a condition
as x=y instead of
x==y

• ordering
x < y // is x less than y?
x >=y // is x greater than or equal to y?
x > y // is x greater than y?
x <=y // is x less than or equal to y?

CSC 142 C 22

What can you compare?
• use ==, !=, <=, >=, <, and > with numbers and

characters (e.g., int, double, char). With
booleans only == and != are valid.

• Don't compare objects with ==, !=, …except
when comparing to null. See later.

CSC 142 C 23

Instance method: returnBook(2)
• Write within the LibraryMember class

public boolean returnBook()
{
if (book != null) //There is a book
{
book=null;
System.out.println("book returned");
return true;

}
else // There is no book
{
System.out.println("Can't return a book");
System.out.println("You don't have a book");
return false;
}
}

CSC 142 C 24

Console output in Java
• Use the out object in java.lang.System

• System: a class to access low level system objects and
methods (e.g. I/O functionalities)

• out: PrintStream object. It comes with methods to
display text in a console window (i.e., not a graphics
window), e.g.
print: print a String
println: same as print but add a newline

// The following prints Hello, world!
System.out.print("Hello, ");
System.out.print("world!");
// The following prints Hello on one line and
// Good bye on the next line
System.out.println("Hello");
System.out.println("Good bye");

CSC 142 C 25

return statement
• In a method

• syntax return expression;
• expression must have the same type as the

method.
• transfer the control flow back to the line of

code that called this method.

The expression next to the
return keyword must be a
String

public String appVersion()
{

// Send back the current version of the program
return "This is version 3.1";

}
CSC 142 C 26

Instance method: borrowBook (1)
• Input: title of the book to borrow
• Output: did the operation succeed? (only one

book can be borrowed). Return a boolean (true
if success, false if failure).

• Code (inside the LibraryMember class)
public boolean borrowBook(String someTitle)
{
// What do we write?
...

• Can the LibraryMember borrow a Book?
• Yes, if book is null. No, if book is not null.

CSC 142 C 27

Instance method: borrowBook (2)
• Code (inside the LibraryMember class)

public boolean borrowBook(String someTitle){
if (book==null) {
// Can borrow the book
book = new Book(someTitle);
// Note the use of + to concatenate Strings
System.out.println("Borrow " + someTitle);
return true;

}
else {
// Can't borrow the book
// Note '\n' to print a new line
System.out.println("You can't borrow "+
someTitle +"\nYou already have a book");
return false;

}
}

CSC 142 C 28

Putting it all together (1)
• class diagrams: + for public, - for private

LibraryMember

- int ssn
- Book book

+ LibraryMember(int)
+ boolean returnBook()
+ boolean borrowBook(String)

Book

- String title

+ Book(String)

CSC 142 C 29

Putting it all together (2)
public class LibraryMember{

// id and borrowed book
private int ssn;
private Book book;

// constructor
public LibraryMember(int someSSN){ssn=someSSN;}

// other methods (see previous slides)
public boolean returnBook(){/*code*/}
public boolean borrowBook(String someTitle)
{

// code
}

}

CSC 142 C 30

Using the class LibraryMember
public class UsingLibraryMember{
public void testLibraryMember()
{
// Borrow and return and see if it works
LibraryMember lm=new LibraryMember(123456789);
lm.borrowBook("The great Gatsby");
if (lm.returnBook())

System.out.println("It is working");
if (lm.borrowBook("The old man and the sea"))

System.out.println("It is still working");
lm.borrowBook("Learning Java");
lm.returnBook();
lm.returnBook();
lm.borrowBook("Learning Java");
}
}

