
CSC 142 B 1

CSC 142

Java objects: a first view

[Reading: chapter 1]

CSC 142 B 2

What is an object? (1)
 An example: a vending machine

 It has things: candy, cans, coffee, money, …
 Some information is public: number of candy

bars…
 Some information is private: the amount of

money…
 The vending machine can perform actions:

 accept money, give change, give food,
refrigerate…

 Some actions are available to anyone, others
require special access (repair person)

CSC 142 B 3

What is an object? (2)

 The machine provides an interface to its
behavior (button panel). The customer doesn't
need to know the internal workings of the
machine.

 There can be many identical machines all
based on the same design. However, each
machine has its own identity (some are out of
order, some have more candy, etc…).

 Java allows us to reproduce this view on the
computer.

CSC 142 B 4

An object in Java

 An object is an instance of a class.
 The class is the blueprint. It describes

 The data contained in the object. Some are
private, some are public.

 The actions that the object can perform.
Some actions are available to anyone
(public methods). Others require special
access (private methods).

 The interface is made of the public data and
methods. It describes what the object can do
for us. We don't need to know how the object
does it (the details are hidden = private).

CSC 142 B 5

Why using objects?
 It corresponds to the way we view the world.

 A plane has engines, two wings… It can fly,
take off, land, carry passengers…

 We can use the same framework to solve
problems on the computer.

 Objects enhance software reusability.
 Once a class is defined, we can use it over

and over. We will do so with many classes of
the Java API.

 As long as the interface is unchanged, the
inner workings (=implementation) of the class
can be modified without requiring any
changes on the part of the users of the class.

CSC 142 B 6

Using objects in Java
 An example: a person defined by a name and

an age.
 Where are the objects?

 The person is the object. It is defined in terms
of other objects = the name and age.

 In Java, do so by writing the blueprint of the
object (=class). Then, to get the object,
instantiate the class.

 What about defining a name and an age?
Age not too difficult just a number.
Name more difficult from scratch, easier if we
use code already written in libraries.

CSC 142 B 7

Interlude: Java libraries
 Library

 A set of classes already written ready to use.
 To represent a name and an age. Use the

String class for the name and possibly the
Integer class for the age (though see later)

 Java has an enormous amount of libraries.
•Programmers can reuse code already

written to write their programs (fast, easy
and less likely to have bugs).

• Important to know what is available
 A library is often called an Application

Programmer Interface (=API). CSC 142 B 8

Person class
 Name the class

 Use a meaningful name,e.g., Person

 The style in Java is to capitalize each letter of each word of
the class name (do so as well), e.g. NeutronStar → Pascal
case or upper camel case.

 A name can contain letters, digits (e.g. CarModel12), the
underscore (_), or currency symbols ($, £, ¥, …).

 A name can't start with a digit (e.g. 1NoGood is not a valid
class name).

 A name can't be a reserved java keyword (e.g. class).

 A name can be as long as you want.

 case sensitive (MyClass Myclass).

CSC 142 B 9

Instance fields
 Name the objects needed to build a Person

object = instance fields
 A String object, e.g., name

 An Integer object, e.g., age

 In practice, use an int for age. See later.

 String and Integer are class names from the Java
library.

 Naming instance fields (lower camel case)
 same rules as for class names, except that the first

letter is lowercase

 e.g., aBlueCircle, aDialogBox
CSC 142 B 10

Constructor(s)

 The constructor is a special function called to
create an object as described by the class.
 The constructor of a class has the same name as

the class, i.e. Person (NO other choice).

 You may define as many constructors as you want.

 Different constructors take different parameters.

 For instance we may define the Person constructor
as taking a String and an int.

CSC 142 B 11

Instance methods

 Name the actions that a Person object can
perform = instance methods

 Namely, a Person object can speak.

 Can have as many methods as needed.

 Method names follow the same rules as
variable names, i.e. lower camel case.

CSC 142 B 12

Class diagram: UML representation

 UML: Unified Modeling Language
 a set of graphical rules to display a design when

programming in an OOP context.

 Person class diagram
- means private, + means public (see later)

Person
class name

-String name
-int age

instance fields

+ Person(String, int)
+ void speak()

Constructors and
instance methods
(explanation for () will
come soon)

CSC 142 B 13

Code for Person
 In a file that must be named Person.java, write

public class Person{
// a person is defined by a name and age
private String name;
private int age;

/* Creates a person with the given age and
name */
public Person(String n, int a){
name = n;
age = a;

}
public void speak() {
System.out.println("Hello, I am " + name +
". My age is " + age + ".");

}

one line comment

multiline comment

every java statement
ends with a semi colon

CSC 142 B 14

Code organization

 Code is written inside of blocks {} that are
class definitions
 public class Person {

/* my code is here */ }
 public means that the class is available to

everyone (No privileged access is required. More
on this later).

 The file that contains the definition of the
public class Person must be named: Person
.java (case sensitive!)

 Only one public class per java file

CSC 142 B 15

Comments
 Ignored by the computer. Essential for the

reader.
 2 types of comments: // and /* */

 Everything between // and the end of the line is
a comment

 Everything between /* and */ is a comment. It
can be used on several lines. You can't nest
these comments (/* blabla /* blabla */ blabla */
gives an error)

 Examples
 // this is a comment
 /* this is a comment that can be written on

several lines */
 Also javadoc comments /** and */

CSC 142 B 16

Instance fields
 Declaration

 e.g., private String name ;

access modifier type identifier

 identifier: the name of the instance field
 access modifier: private (the identifier can

only be used in the class, i.e., within the bloc
{} of the class). public (the identifier can be
used outside the class). More on this later.

 type: the class name of the identifier.
 A declaration doesn't create an object. It just

creates a name for an object.

CSC 142 B 17

Running the code: client code
 Write code that creates a person and makes it

speak

 Write a client class with a main method

public class PersonUser {
public static void main(String[] args) {

Person p = new Person("Sara", 25);
p.speak();

}
}

CSC 142 B 18

Instantiating a class

 To create an object, e.g. a Person, write
Person p = new GWindow("Sara", 25);

 An object of type Person is created by
executing the statements listed in the
constructor of the Person class.

 Now, p refers to an actual object (p refers to
a chunk of memory that contains
information about a Person).

 In UML (for object diagrams)

CSC 142 B 19

Calling a method

 To make the person speak, write
p.speak();

 The speak method of the Person class is
called with the object referred to by p.

CSC 142 B 20

Object diagram

 An object diagram represents the objects
currently in memory at some point of the
execution of a program.

 e.g. just after the line
Person p = new Person("Sara", 25);

p points to an object of type Person.

p
Person

name

String

"Sara"

age 25

CSC 142 B 21

"Our" object diagram conventions

 A dot means an address

 An object in memory is represented as a
table with two rows:
1st row: object type
2nd row: list of the instance fields (some of
which may point to more objects)

 To simplify, display some objects with just
their contents (e.g. "Sara" instead of listing
the fields of the String class)

 Sometimes write the first row as Person: p
instead of just Person CSC 142 B 22

Another example with graphics
 An example: Display a circle within a graphics

window.
 Where are the objects?

 We want an object that has two objects, a
circle and a graphics window. The object
should put the circle in the graphics window.

 In Java, do so by writing the blueprint of the
object (=class). Then, to get the object,
instantiate the class.

 What about creating a circle and a graphics
window? Difficult from scratch, easy if we use
code already written in libraries.

CSC 142 B 23

Interlude: Java libraries
 Library

 A set of classes already written ready to use.
 In our example, we want a library that has

classes (=blueprints) for a graphics window
and a circle. Use the UW library.

 Java has an enormous amount of libraries.
•Programmers can reuse code already

written to write their programs (fast, easy
and less likely to have bugs).

• Important to know what is available
 A library is often called an Application

Programmer Interface (=API). CSC 142 B 24

WindowWithCircle class
 Name the class

 Use a meaningful name,e.g.,
WindowWithCircle

 The style in Java is to capitalize each letter of
each word of the class name (do so as well).

 A name can contain letters, digits (e.g.
CarModel12), the underscore (_), or currency
symbols ($, £, ¥, …).

 A name can't start with a digit (e.g. 1NoGood
is not a valid class name).

 A name can't be a reserved java keyword
(e.g. class).

 In practice, a name can be as long as you
want.

 case sensitive (MyClass Myclass).

CSC 142 B 25

Instance fields
 Name the objects needed to build a

WindowWithCircle object = instance fields
 A GWindow object, e.g., window

 A Oval object, e.g., circle

 (GWindow and Oval are class names from
the CSE142 UW library)

 Naming instance fields

 same rules as for class names, except that the
first letter is lowercase

 e.g., aBlueCircle, aDialogBox
CSC 142 B 26

Instance methods

 Name the actions that a WindowWithCircle
object can perform = instance methods

 Namely, create a graphics window and a
circle. Put the circle in the graphics window.

 Do it when building a WindowWithCircle
object.

 Done in a special method, called the
constructor. The constructor of a class has the
same name as the class name,
WindowWithCircle (no other choice).

 No other methods needed here.

CSC 142 B 27

UML representation
 UML: Unified Modeling Language

 a set of graphical rules to display a design
when programming in an OOP context.

 WindowWithCircle class diagram

WindowWithCircle
class name

GWindow window
Oval circle

instance fields

WindowWithCircle()
instance methods
(explanation for ()
will come soon)

 More rules in UML (see later).
CSC 142 B 28

Code for WindowWithCircle
 In a file that must be named WindowWithCircle.java, write

import uwcse.graphics.*; //uw graphics library
public class WindowWithCircle{

// instance fields
private GWindow window;
private Oval circle;

// Only one instance method: the constructor
public WindowWithCircle(){
/* Create the window and the circle

Put the circle in the window */
window = new GWindow();
circle = new Oval();
window.add(circle);

}
}

one line comment

mutiline comment

every java statement
ends with a semi colon

CSC 142 B 29

Code organization

 Code is written inside of blocks {} that are
class definitions
 public class WindowWithCircle {

/* my code is here */ }
 public means that the class is available to

everyone (No privileged access is required. More
on this later).

 The file that contains the definition of the
public class WindowWithCircle must be
named: WindowWithCircle .java (case
sensitive!)

 Only one public class per java file
CSC 142 B 30

The import statement
 To access the content of libraries
 import uwcse.graphics.* means:

 we can use any class listed in the folder
graphics which is in the folder uwcse.

 uwcse.graphics is called a package.
 To limit the access to GWindow and Oval only

import uwcse.graphics.GWindow;
import uwcse.graphics.Oval;

 More specific for the reader. But, requires
several import statements.

 Using import is optional. If omitted, need to write
the full name in the code, e.g.
uwcse.graphics.GWindow instead of just
GWindow.

CSC 142 B 31

Comments
 Ignored by the computer. Essential for the

reader.
 2 types of comments: // and /* */

 Everything between // and the end of the line is
a comment

 Everything between /* and */ is a comment. It
can be used on several lines. You can't nest
these comments (/* blabla /* blabla */ blabla */
gives an error)

 Examples
 // this is a comment
 /* this is a comment that can be written on

several lines */
 Also javadoc comments /** and */

CSC 142 B 32

Instance fields
 Declaration

 e.g., private GWindow window ;

access modifier type identifier

 identifier: the name of the instance field
 access modifier: private (the identifier can

only be used in the class, i.e., within the bloc
{} of the class). public (the identifier can be
used outside the class). More on this later.

 type: the class name of the identifier.
 A declaration doesn't create an object. It just

creates a name for an object.

CSC 142 B 33

Instantiating a class

 To create an object, e.g. a GWindow, write
window = new GWindow();

 An object of type GWindow is created by
executing the statements listed in the
constructor of the GWindow class.

 Now, window refers to an actual object
(window refers to a chunk of memory that
contains information about a GWindow).

 In UML (for object diagrams)

window :GWindow
CSC 142 B 34

Constructor: a first view

 A special instance method of a class executed
when (and only when) an instance of the class
is created (using new), as in

circle = new Oval();
// execute constructor of Oval class

 It must have the same name as the class
 Syntax (e.g. for WindowWithCircle)
public WindowWithCircle(){/*write code here*/}

 public means that anyone can instantiate the
class. What if we used private?

 Can have multiple constructors in the same
class (see later).

CSC 142 B 35

WindowWithCircle constructor(1)

 Create a GWindow and an Oval: OK, use new
window = new GWindow();

circle = new Oval();

 Put the circle in the window: need to know what
a GWindow and an Oval can do.

 Whenever using a library, read the
documentation. It describes every public
member of the class (=interface for the user of
the class).

 Available directly inside the java IDE or online.
CSC 142 B 36

WindowWithCircle constructor(2)

 GWindow lists the instance method add, to add
an item to a GWindow object.

 Use the dot notation to access the instance
method via the reference to the object, i.e.

window.add(circle);

 Note that add takes an input parameter (namely
circle). Our next chapter will describe such
methods.

CSC 142 B 37

A few questions
 Change the color of the circle?

 Displaying the circle at another location within
the graphics window?

 Creating a window with a different size.

 All of the above can be done. It requires using
the right methods from the GWindow or Oval
classes (try it!).

