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The mysterious spinning cylinder—Rigid-body motion that is full
of surprises
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We explore the steady-state rotational motion of a cylinder on a flat horizontal surface from a

pedagogical perspective. We show that the cylinder’s inclination angle depends on its rotational velocity

in a surprisingly subtle manner, including both stable and unstable solutions as well as a forbidden

region with no (real) solutions. Moreover, the cylinder’s behavior undergoes a qualitative change as the

aspect ratio decreases below a critical value. Using a high-speed video, we measure the inclination angle

as a function of rotation speed and demonstrate good agreement with the theoretical predictions. All

aspects of the analysis are well within the capabilities of undergraduate students, making this an ideal

system to explore in courses or as an independent project. VC 2019 American Association of Physics Teachers.

https://doi.org/10.1119/1.5086391

I. INTRODUCTION

Rigid-body motion is a standard topic in a classical
mechanics course, yet it’s one that often leaves students con-
fused. Part of the difficulty lies in the fact that students must
simultaneously deal with forces, torques, angular momentum,
non-inertial reference frames, the inertia tensor, principal
axes, and Euler angles. While none of these topics are particu-
larly difficult by themselves, a rigid-body motion problem can
involve all of them and it can be quite challenging for students
to keep everything straight, particularly when many of these
topics are new. In situations like this, it is not uncommon for
students to start blindly following the mathematics, losing all
insight into what is going on physically. One way to combat
this tendency is to provide students with a real physical exam-
ple that is captivating yet straightforward to understand. By
giving students something they can play around with, they can
focus more of their attention on the physics and hopefully use
the mathematics as a tool for their exploration.

Two interesting toys that can be used to motivate the study
of rigid-body motion are a tippe top,1,2 which flips itself
over, and a rattleback,3,4 which reverses its direction of spin.
Unfortunately, while these toys are certainly captivating,
understanding their behavior can be a challenge for under-
graduates. Indeed, even the traditional spinning top can be
difficult to analyze except under specific conditions, and
these conditions do not often materialize when spinning a
real top on a table.

One toy that is both alluring and straightforward to under-
stand goes by the name of Hurricane Balls. This toy, dis-
cussed in the literature not long ago,5 makes a great addition
to a classical mechanics course and can be used as a demon-
stration or as an extended homework problem or student pro-
ject.6 One of the reasons this toy is so effective at engaging
students is its simplicity—Hurricane Balls consists of noth-
ing more than two steel balls that have been glued (or
welded) together. It is very easy to get Hurricane Balls spin-
ning and the resulting motion is clearly non-trivial while
being perfectly reproducible, allowing for both theoretical
and experimental investigations. Furthermore, a compressed
air source can be used to get Hurricane Balls spinning so fast
(�100 Hz) that the centrifugal forces will rip the balls apart
(assuming they are glued together), which is always exciting
to students.

Here, we report on a similar toy that consists of nothing
more than a short cylindrical tube made of polyvinyl chloride
(PVC). Such a tube can be set spinning by laying it down on
a flat table, placing a finger on top of one end, and then push-
ing down fairly hard until the end of the cylinder shoots out
from under the finger, with the finger snapping down onto
the table. Although the motion of the spinning cylinder is
itself somewhat captivating, the real surprise comes when
the ends of the cylinder are labelled with an X and an O, as
shown in Fig. 1. Surprisingly, if one pushes down on the X
to get the cylinder spinning, one will see only Xs when
viewed from above. Similarly, if one pushes down on the O,
then only Os will be visible (see Fig. 1). The fact that one of
the letters disappears from sight when the cylinder is spun is
quite surprising to students, and this mystery can provide
powerful motivation to try to understand what is happening.
In fact, before reading further, I encourage you to go find
such a cylinder and try to figure out the mystery for yourself.

It is not clear when this mysterious phenomenon was first
discovered. Mamola,7 who provides a fairly detailed discus-
sion of the basic physics, reports seeing this device presented
at an AAPT meeting in 1993. More recently, the pedagogical
benefits of this surprising effect were promoted as an authen-
tic laboratory experience for undergraduate students,8 with
one of the authors stating that they had seen this device at a
regional AAPT meeting “around 1990.” However, due to the
simplicity of the system involved, it is likely that this phe-
nomenon has been “discovered” many times prior to 1990.
Indeed, a fairly thorough investigation of the spinning cylin-
der’s motion was carried out in the early 1980s by
Whitehead and Curzon,9 though there is no mention of the
mysterious disappearing-symbol behavior described above
(this work was also the impetus for a beautifully written
essay for The Amateur Scientist column in Scientific
American10).

The spinning-cylinder mystery has been widely discussed
on the internet, perhaps most prominently on the Veritasium
YouTube channel, where it has been viewed nearly four mil-
lion times.11 Such a large number of views demonstrates that
this phenomenon is inherently interesting to the general pub-
lic and is one reason why this system is ideally suited to help
motivate students in class.

Although the spinning-cylinder problem has a relatively
short publication history, the closely related problem of a
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disk rolling on a horizontal surface has been extensively dis-
cussed in the literature. According to Shegelski et al.,12 this
problem was first studied by Poisson as far back as 1883 and
has since been studied by many authors (Ref. 12 provides a
brief but reasonably complete history). A coin rolling on a table
is something that will be familiar to all students; however, solv-
ing the problem in general turns out to be surprisingly com-
plex.13 As such, several authors have analyzed special cases of
the motion in order to simplify the mathematics and make the
problem more accessible to students.14–16

Renewed interest in the rolling disk problem came as a
result of a commercially available toy called Euler’s Disk.17

Like the mysterious spinning cylinder, Euler’s Disk is quite
captivating and makes an excellent demonstration in a classi-
cal mechanics course.18 The toy consists of a thick metal
disk that is spun like a coin on a smooth (slightly concave)
surface. After some time, the disk will begin rolling on its
rim, and as the disk gets closer to being horizontal, the rota-
tion frequency can be heard to increase quite dramatically.
The entire process takes several minutes to complete, but it
is what happens right near the end that is of current interest.
This behavior has been described by Moffat19 as a “finite-
time singularity”; in his words, the disk ultimately “comes to
rest quite abruptly, the final stage of motion being character-
ized by a shudder and a whirring sound of rapidly increasing
frequency.” Immediately after Moffat’s analysis appeared, a
debate ensued as to precisely what is responsible for the
energy loss in this system.20 Research on various aspects of
Euler’s Disk continues to this day, although it now appears
clear that the dominant energy-loss mechanism near the end
of the motion is due to rolling friction.21

In this article, we investigate a spinning cylinder in a man-
ner that is appropriate for use with sophomore or junior stu-
dents. Our treatment is designed to be pedagogical in nature
so the presentation includes topics such as vector analysis,
rotation matrices, the inertia tensor, and principal axes. Our
study is limited to the steady-state motion of the cylinder in
which the center of mass remains at rest. Despite this

restriction, the theoretical analysis turns out to be remarkably
rich and leads to a number of surprising results. We also pre-
sent experimental data obtained from the high-speed video
that show good agreement with the theory.

II. THEORY

A. Qualitative analysis

Before embarking on a full mathematical treatment, it is
helpful to give each student their own cylinder so that they
can play around and make some qualitative observations.22

They should be encouraged to try different things such as
spinning the cylinder faster or slower or viewing the spin-
ning cylinder from different angles. Two things should soon
become clear: (i) if the cylinder is not launched fast enough,
it never really gets going and the disappearing-symbol phe-
nomenon is not observed, and (ii) if spun fast enough, there
is a brief transient period where the motion is quite complex,
but the cylinder quickly settles into a fairly simple steady-
state motion. If we focus our attention on this steady-state
motion, the following observations can be made:

• The center of mass is nearly at rest (it moves downward,
but it does so very slowly).

• The cylinder is not spinning flat on the table; instead, one
end is up in the air.

• The faster the cylinder is spun the more it “stands up” on
end; however, it appears that the cylinder will not rise
above some maximum angle with the table.

• The cylinder rolls without slipping on the table.

The rolling-without-slipping constraint is one that students
might not notice on their own. This constraint can be under-
stood by analogy with a hula-hoop rolling along the floor.
Imagine a hula-hoop of radius R spun on the floor with a
large angular velocity x and no linear velocity (v¼ 0). The
hula-hoop initially slides against the floor, resulting in a
(kinetic) frictional force that acts to decrease the angular
velocity while simultaneously increasing the linear velocity.
As long as the hula-hoop continues to slide against the floor,
the kinetic frictional force will continue to act. The result is
that the angular velocity continues decreasing and the linear
velocity continues increasing until the rolling condition
v¼xR is met. At this point, the hula-hoop rolls without slip-
ping and will continue to do so until rolling friction (and air
resistance) brings it to a stop.

After making these qualitative observations, it is helpful
to show a slow-motion movie to give students a better look
at the cylinder’s motion. We have included such a movie as
supplementary material to this article.23 Besides demonstrat-
ing that the cylinder really does roll without slipping, the
movie also clearly shows that both the X and the O face up
at the same time (as, of course, must be the case).

In order to analyze this system, we will make only a single
simplification: we will assume that during the steady-state
motion, the center of mass remains at rest. At first glance, it
might appear that this assumption is so drastic as to render
the problem trivial, but it turns out that there is still much to
learn. Recall that our goal here is not to solve the spinning
cylinder problem in general. Instead, we want to help stu-
dents learn how to analyze a complex real-world problem
and gain as much physical insight as possible. Note that by
assuming a stationary center of mass, we are implicitly
assuming that the cylinder maintains a fixed angle with the

Fig. 1. Top: A piece of 5
8
-in. diameter PVC pipe with a length of 3 3

4
inches

has an X and an O marked on the ends. Bottom: A photograph of this tube

after being spun by pushing down on the O and launching the cylinder by

snapping the finger down. Note that there are six Os visible but none of the

Xs can be seen. This surprising behavior provides good motivation when stu-

dents are learning about rigid-body motion (enhanced online).
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table and that it spins at a constant rate (i.e., no energy is lost
from the system so that friction and air drag are assumed to
be negligible).

B. Fundamental equations

A natural starting point is Newton’s second law of motion

Fnet ¼ ma: (1)

Here, m is the mass of the cylinder and a is the acceleration
of the center of mass. Because we are neglecting both fric-
tional forces and air resistance, there are only two forces act-
ing on the cylinder: the gravitational force acting downward
through the center of mass and the normal force FN of the
table on the cylinder acting upward at the point of contact. If
the center of mass remains fixed, the net force will be zero,
giving

FN ¼ �mg; (2)

where g is the gravitational field. Thus, we see that the nor-
mal force has a magnitude equal to the gravitational force
and points in the opposite direction, something we probably
could have guessed at the outset. Unfortunately, there is
nothing else to learn from Newton’s second law.

The reason Newton’s second law is not very helpful is
because the motion is purely rotational, and although the net
force is equal to zero, there is a nonzero net torque acting on
the system. In order to make progress, therefore, we need to
invoke the rotational version of Newton’s second law,
namely,

Cnet ¼
dL

dt
: (3)

Here, Cnet represents the net torque about the center of mass
and L is the angular momentum of the cylinder.24

Before moving forward, we need a sketch that shows the
geometry of the situation and defines an appropriate coordi-
nate system. While any coordinate system can be used, some
are more useful than others and students should be advised
to take advantage of the symmetry of the cylinder. Figure 2
shows a sketch of the cylinder at one instant of time (say,
t¼ 0) and includes two different coordinate systems, both

with their origins at the cylinder’s center of mass C. The (x,
y, z) system is an inertial laboratory coordinate system that
does not change with time, while the (1, 2, 3) system is a
(non-inertial) set of principal axes that maintains its align-
ment with the object, rotating about the vertical. We include
two coordinate systems because (i) Eq. (3) is only valid in an
inertial coordinate system and (ii) we want to take advantage
of the symmetry of the cylinder. Both of these coordinate
systems will prove useful in the analysis.25

It is important to note that the (1, 2, 3) non-inertial coordi-
nate system is not a “body-fixed” coordinate system, as is
usually adopted in such a situation. Although our choice here
is somewhat non-standard, the use of such a coordinate sys-
tem simplifies the analysis by eliminating any dependencies
on w (see Fig. 2).

C. The angular velocity vector

The cylinder in Fig. 2 has mass M, half-length ‘, and
radius R, while the angles h, /, and w (the so-called Euler
angles) specify its orientation in space (with 0 � h � p=2 in
this case). Because we are assuming that the center of mass
remains fixed, the angle h will be constant. Likewise, the
rotational velocities _/ (about the vertical axis) and _w (about
the symmetry axis) will also be constant. In terms of these
angles, the angular velocity is most simply written as

x ¼ _/ êz þ _w ê3: (4)

To take advantage of the symmetry of the cylinder, the angu-
lar velocity can be expressed solely in terms of the principal
axes as

x ¼ _/ sin h ê1 þ ð _/ cos hþ _wÞ ê3: (5)

To proceed further, we need to determine the relationship
between _/ and _w, which can be found from the geometry of
Fig. 2. Because the cylinder rolls without slipping, the point
of contact P traces out a circle of radius r/ on the table while
simultaneously tracing out a circle of radius R on the cylin-
der. Thus, the velocity of the point of contact will be the
same on the table and the cylinder so that v/ ¼ r/

_/ ¼ vw

¼ R _w. From the geometry of Fig. 2, we find that r/ ¼ ‘ sin h
�R cos h, giving

_w ¼ ð~‘ sin h� cos hÞ _/; (6)

where ~‘ ¼ ‘=R is the (dimensionless) aspect ratio of the cyl-
inder. In our analysis, we will assume that _/ > 0. However,
note that as written r/ can be positive or negative depending
on whether the point of contact P lies to the left or right,
respectively, of the center of mass C. The result is that _w can
be positive or negative (or zero) depending on the value of h.
We will return to this point later, but for the situation shown
in Fig. 2, we note that _w > 0. Then, defining X � _/ (>0)
and substituting into Eq. (5), we find

x ¼ X sin hðê1 þ ~‘ ê3Þ; (7)

which gives the instantaneous angular velocity of the
cylinder.

In order to gain some insight into what Eq. (7) is telling
us, notice that both components of the angular velocity have

Fig. 2. The geometry of the spinning cylinder (both êy and ê2 point out of

the page). A cylinder of mass M, half-length ‘, and radius R rolls without

slipping on a horizontal surface. The (x, y, z) coordinate system is an inertial

(laboratory) system that remains fixed, while the (1, 2, 3) system rotates

about the vertical axis with angular speed _/ (and thus remains aligned with

the cylinder).
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the same h-dependence. Thus, the angle c that x makes with
the symmetry axis is independent of h (see Fig. 3):

c ¼ arctan
x1

x3

� �
¼ arctan

R

‘

� �
: (8)

In other words, the angular velocity vector always points
along the vector rþ ¼ R ê1 þ ‘ ê3 and thus passes through
the uppermost point on the cylinder (point O in Fig. 3). The
instantaneous axis of rotation therefore consists of a line
through the diagonal of the cylinder that passes through the
point of contact P, the center of mass C, and the uppermost
point O.

At this point, some students may have figured out why
only one symbol is visible when the cylinder is spun (though
most, probably, will have not). To make things somewhat
more explicit, students can be asked to calculate the (linear)
velocity at locations r6 ¼ R ê16‘ ê3 on the cylinder (points
O and X in Fig. 3). By calculating v6 ¼ x� r6, one will
see that two velocities come into play, one due to rotation
about the 1-axis and the other due to spin about the 3-axis,
and that these two velocities have exactly the same magni-
tude. At location rþ, these velocities are in opposite direc-
tions and will exactly cancel; at location r�, they are in the
same direction and will add together. The net result is that
when viewed from above, one end of the cylinder (point O
in Fig. 3) will be instantaneously at rest while the other end
(point X) will be moving quite rapidly.26,27

It is worth mentioning that a highly motivated student can
figure all of this out qualitatively just by playing around with
a cylinder and thinking about the motion. It is not too diffi-
cult to see that when you launch the cylinder with your fin-
ger, one end moves away from you while the other end
moves toward you. At the same time, your finger imparts
“backspin” to the cylinder, which gives the top of the cylin-
der a velocity toward you (on both ends).28

D. The angular momentum vector

Next, we turn our attention to the angular momentum vec-
tor L. A student’s first inclination might be to use the equa-
tion L ¼ Ix, with I being the moment of inertia; however,
this equation assumes that both L and x point in the same
direction, which is not the case here. Instead, we must use

the more general version of this equation L ¼ I � x, where I
here is the inertia tensor. If tensors are new to the students,
some discussion will inevitably be required to get them
familiar with the concept.

As with a vector, the components of I will depend on the
coordinate system used, so it is now more important than
ever to choose a coordinate system carefully. The (1, 2, 3)
coordinate system in Fig. 2 is composed of a set of principal
axes in which the inertia tensor is diagonal; this simplifies
the problem considerably.29 The diagonal elements of the
inertia tensor are the moments of inertia about the three prin-
cipal axes, which we write as I1, I2, and I3. In this coordinate
system, the angular momentum vector is then
L ¼ I1x1 ê1 þ I2x2 ê2 þ I3x3 ê3, and using Eq. (7) we find
that

L ¼ X sin hðI1 ê1 þ I3
~‘ ê3Þ: (9)

Just like with the angular velocity vector x, we see that both
components of the angular momentum vector have exactly
the same dependence on h. We therefore find that the angle b
that L makes with the symmetry axis is independent of h
(see Fig. 3):

b ¼ arctan
L1

L3

� �
¼ arctan

I1

I3

R

‘

� �
: (10)

Referring to Eq. (8), we see that when I1¼ I3, the angles c
and b will be equal. In this case, L will be proportional to x
and the introductory physics formula L ¼ Ix will indeed be
valid. For the situation shown in Fig. 3, where I1> I3 (which
we take to define a “cylinder”31), Eqs. (8) and (10) lead to
b> c. Similarly, when I1< I3 (a “disk”), we find that b< c.
The vector L is sketched in Fig. 3 and is observed to precess
about the vertical axis at a constant rate X (along with the
cylinder and all other vectors in this figure). The precession
of L is a result of there being a net torque about the center of
mass. Students can readily verify using the right-hand rule
that this torque acts in the negative y direction (into the page
in Fig. 3), as expected from the direction of precession (dL
also points into the page).

The stage is now set to explicitly calculate the torque and
apply Eq. (3). Before doing so, however, we discuss a subtle
and interesting feature of Fig. 3.

Recall that one of our qualitative observations was that the
faster the cylinder is spun the more it “stands up.”
Mathematically, this means that the angle h decreases as the
rotation rate X increases. But it was also noticed that there
appears to be a limit to how much the cylinder will stand up,
which suggests that there may be a minimum value (hmin) to
h. Looking at Fig. 3, we see that as h decreases, the compo-
nent of L perpendicular to the vertical (L?)—the portion of
L that changes with time—becomes smaller. In fact, as
h! b, we see that L? ! 0. But when h¼ b, there will still
be a finite torque in the negative y direction. Therefore, the
only way to keep dL/dt finite as h! b (so that it balances
the applied torque) is for the rotation rate to increase without
bound. In other words, X!1 as h approaches will
approach the value b ¼ arctanðI1R=I3‘Þ. Note that without
even solving the equation of motion, we have arrived at a
concrete prediction based solely on physical grounds. Such
arguments are well worth discussing with students before
embarking on a full mathematical treatment of the problem.

Fig. 3. The angular velocity vector x always passes through the uppermost

point O on the cylinder, independent of the angle h. For the situation shown

here (corresponding to I1 > I3), the angular momentum vector lies further

from the symmetry axis compared to x (i.e., b> c).
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E. The equation of motion

At this point, one might be tempted to use Eq. (7) to write
the kinetic energy of the system as T ¼ 1

2
I1x2

1 þ I3x2
3Þ

�
and

use a Lagrangian approach to solve this problem. However,
unlike the situation with Hurricane Balls,6 such an approach
will fail here due to the rolling-without-slipping constraint
being nonholonomic.30 Fortunately, using Eq. (3) is quite
straightforward. The only force that causes a torque about
the center of mass is the normal force FN, which gives

Cnet ¼ r� FN ¼ ð�R ê1 � ‘ ê3Þ �Mg êz

¼ MgR cos hð1� ~‘ tan hÞê2: (11)

In principle, we need to equate this torque to the time deriva-
tive of the angular momentum vector in Eq. (9). However,
there is no obvious time dependence in Eq. (9), so students
might be tempted to say that dL/dt is equal to zero. The
problem is that Eqs. (9) and (11) are written in terms of the
non-inertial (1, 2, 3) coordinate system, whereas Eq. (3) is
only valid in an inertial reference frame. In other words,
there is an implicit time-dependence to the basis vectors
ê1; ê2, and ê3 (recall that Fig. 2 is drawn at time t¼ 0). To
proceed further, therefore, we need to explicitly add in the
time dependence to Eqs. (9) and (11). Because the vectors L
and C precess about the z-axis at a constant rate X, an
instructive way to incorporate this time dependence is to use
rotation matrices.

The matrix

Rz nð Þ ¼
cos n �sin n 0

sin n cos n 0

0 0 1

0
@

1
A (12)

is the (active) rotation matrix for a rotation about the z-axis.
Specifically, when applied to a column vector consisting of
(x, y, z) components, that vector is seen to rotate about the z-
axis by an angle n. Applying the (time-dependent) matrix
RzðXtÞ would then lead to a vector that rotates about the z-
axis with a constant angular velocity X, precisely what we
want the vectors L and C to do. Thus, to make the time
dependence explicit in Eqs. (9) and (11), we merely need to
write these vectors in terms of their (x, y, z) components and
apply the matrix RzðXtÞ.

Let us begin with the torque vector in Eq. (11). At t¼ 0,
Fig. 2 shows that ê2 ¼ êy. Therefore, the torque at t¼ 0 is
given by Cð0Þ ¼ MgR cos hð1� ~‘ tan hÞêy. Applying the
(time-dependent) rotation matrix to this vector then gives

CðtÞ ¼RzðXtÞCð0Þ
¼�MgRcoshð1�~‘ tanhÞ sinðXtÞ êx� cosðXtÞ êy

� �
:

(13)

For the angular momentum vector in Eq. (9), we must first
break ê1 and ê3 into their x and z components before apply-
ing the rotation matrix; the end result is

LðtÞ ¼ I3X sin h cos hfðI1=I3 � ~‘ tan hÞ
� cosðXtÞ êx � sinðXtÞ êy

� �
þ ðI1=I3 � ~‘Þêzg:

(14)

As expected, Lz has no time-dependence—any vector that
rotates about the z-axis will have a constant z-component.

The equation of motion is finally found by taking the time
derivative of Eq. (14) and equating it to Eq. (13), giving

~X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~‘ tan h

I1=I3 � ~‘ tan h
� �

sin h

s
; (15)

where ~X � X=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MgR=I3

p
is a dimensionless rotation rate.

III. ANALYSIS OF THE EQUATION OF MOTION

Equation (15) contains a tremendous amount of informa-
tion and analyzing it can be somewhat intimidating for stu-
dents. In such a situation, it can be helpful to begin by
examining some limiting cases.

A. Limiting cases

One limiting case occurs when the rotation speed goes to
zero, which happens when the numerator in Eq. (15) goes to
zero, or when h ¼ h0 � arctanðR=‘Þ. This angle is one we
have seen before [see Eq. (8)] and represents the angle c
between x and the symmetry axis. From Fig. 3, we see that
when h ¼ c, the angular velocity points along the vertical, so
the center of mass lies directly above the point of contact. In
other words, the rotation rate is zero when the cylinder is bal-
anced on a single point. Although this is a valid solution to
Eq. (15), it is clearly an unstable situation and not one that is
likely to be observed experimentally.

Another limiting case is when the rotational speed goes to
infinity. This situation was briefly discussed in Sec. II D on
purely physical grounds. Here, we look at the situation math-
ematically by letting the denominator in Eq. (15) go to zero.
We find two possibilities: either h! h1 � arctanðI1R=I3‘Þ
or h! 0. As already discussed, the angle h1 (¼b) occurs
when the angular momentum vector points along the vertical
axis [see Eq. (10) and Fig. 3], so this solution is to be
expected. On the other hand, the solution h! 0 corresponds
to the cylinder oriented so that it stands vertically on one of
its ends. This solution may come as a bit of a surprise to stu-
dents.32 One can picture this situation as the “wobbling”
motion of an empty bottle or can that has been gently spun
while standing nearly upright.

One final limiting case we can examine is when h! p=2.
This situation corresponds to the cylinder lying on its side,
with one end just beginning to lose contact with the table.

Taking the appropriate limit in Eq. (15) leads to ~X ! 1 and

corresponds to the critical rotation rate Xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MgR=I3

p
nec-

essary to achieve the steady-state motion depicted in Fig. 2.
Interestingly, a cylindrical tube has moment of inertia

� MR2 about the symmetry axis so that Xc ¼
ffiffiffiffiffiffiffiffi
g=R

p
is

independent of both ‘ and M. For the piece of PVC
pipe shown in Fig. 1, an order-of-magnitude estimate gives

Xc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10 m=s2Þ=ð10�2 mÞ

q
� 32 rad=s � 5 Hz. Playing

around with this cylinder shows that this value seems just
about right.

B. Detailed analysis

Now that we have looked at the limiting cases, let us
explore the complete set of solutions to Eq. (15) in more
detail. We found it convenient to use solid cylinders (and
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disks) for our experiments, so we will adopt I3 ¼ 1
2

MR2 and

I1 ¼ 1
2

MR2½1
2
ð1þ 4~‘

2
=3Þ	 for the remainder of this paper.

The solutions to Eq. (15) will only be real when the quan-
tity under the radical is positive. Therefore, both the numera-
tor and the denominator must be either positive or negative.
Having just determined when the numerator and denomina-
tor are equal to zero (at h0 and h1, respectively), it is
straightforward to confirm that there will only be real solu-
tions when h > h0; h1 or when h< h0, h1. In other words,
there will be no real solutions when h lies between h0 and
h1. This information is displayed in Fig. 4, where we plot
both h0 and h1 as a function of the aspect ratio ~‘. Note the
“forbidden” regions (dark gray) where there are no real solu-
tions to Eq. (15). Each point outside these regions represents
a valid steady-state solution.

Some of the features of Fig. 4 have been previously dis-
cussed.9,10 The curves h1 and h0 represent boundaries
between the forbidden regions and regions where real solu-
tions exist. These curves cross at an aspect ratio of ~‘
¼

ffiffiffi
3
p

=2 (vertical dashed line), which leads to different
behaviors to the right and left of this value. This aspect ratio
corresponds to the point where I1¼ I3 and marks the dividing
line between “cylinders” (~‘ >

ffiffiffi
3
p

=2) and “disks” (~‘ <
ffiffiffi
3
p

=2).
The areas above and below the forbidden regions correspond to
different types of motion: the upper region represents cylinders
spinning on their sides (or disks spinning on their edges) and
having _w > 0 [see Eq. (6)]; the lower region represents cylin-
ders spinning on their ends (or disks spinning on their faces)
and having _w < 0.

One feature of Fig. 4 that has not been previously dis-
cussed is the stability of the solutions. As discussed earlier,
the solutions along the curve h0 represent the cylinder (or
disk) balancing on a single point of contact with ~X ¼ 0.
Such solutions are obviously unstable. In fact, there is a band
of unstable solutions adjacent to this curve, depicted by light
gray shading and bounded by the dashed multi-valued curve.
(The details of the stability calculation are presented in the
Appendix so as not to interrupt the flow of the discussion.)
Thus, a cylinder spinning on its end (lower right portion of
Fig. 4) will be unstable once h becomes too large. Similarly,
disks spinning on their sides are only stable for relatively
large aspect ratios (~‘’ 0:477) and for large angles (h near
p=2). Interestingly, there is a small range of aspect ratios

(between
ffiffiffi
3
p

=2 and �0:9465) in which there are two stable
regions separated by an unstable region for cylinders spin-
ning on their sides. Again, we note that even though these
unstable motions represent valid solutions to Eq. (15), it is
not expected that they would be observable experimentally.

Figure 4 contains a lot of information and can be a bit
overwhelming for students to comprehend, at least initially.
One way to clarify what is going on is to consider a specific
aspect ratio and imagine what happens as ~X (or h) is varied.
For example, consider an aspect ratio of ~‘ ¼ 2:5 and imagine
spinning the cylinder while on its side so that we are in the
upper portion of the graph. Recall that sustained steady-state
motion is not possible unless the cylinder is spun with
~X 
 1, in which case the cylinder would just be entering the
steady-state regime at h ¼ p=2 (point A on the graph). As
we increase the angular speed, perhaps by using an air
source, the angle h decreases (as the cylinder stands up) and
we move vertically down on the graph. As we continue
increasing the angular speed, we move further down verti-
cally (more and more slowly), approaching the curve h1 as
~X !1 (point B). At this point, we reach the forbidden
region and h will not decrease any further. In this sense, the
curve h1 represents a minimum angle for cylinders spinning
on their sides.

As we increase ~X as just described, the energy of the sys-
tem is seen to increase as well. Although our analysis
assumed that there were no energy losses in the system, there
will always be dissipation in any real system. Thus, if one
spins up a cylinder in a real experiment and lets it evolve nat-
urally, the rotation speed will decrease as the system loses
energy, causing h to increase. This behavior is indicated by
the arrow on the vertical line adjoining points A and B,
depicting the “downhill” flow of energy in the system.

Now consider point C on the graph. Here, the angular
speed is ~X ¼ 0 and the cylinder is balanced with its center of
mass directly above the point of contact. Moving down verti-
cally, h will again decrease as ~X (and the energy) increases.
The steady-state motion thus consists of a slowly rotating
cylinder that is very near the balancing angle. This too is an
unstable solution. As h decreases further (and ~X continues
increasing), we will eventually reach a point where the
motion becomes stable (we have crossed the dashed curve).
For a small range of angles below this point, the energy will
continue to rise. Thus, if a real cylinder (subject to friction
and air resistance) is spinning in this range of angles, the sys-
tem will evolve upwards (h will increase) on the graph as
the energy flows downhill. In other words, the stable motion
will be “pulled” into the unstable region. However, as h
decreases further, we soon reach an angle (point
D; h � 0:25) where the energy of the system begins decreas-
ing.33 A real spinning cylinder with angles below this value
will evolve so that h decreases, with ~X increasing (to 1) as
h! 0 (point E).

One can analyze the motion of disks in a similar manner.
For example, a disk with aspect ratio ~‘ ¼ 0:25 (similar to
Euler’s Disk) has no stable motions for spinning on its edge.
The first stable motion occurs when the disk is spinning on
its face with h! h1 and ~X !1 (point F in Fig. 4). As h
decreases initially, both the rotation rate and the system
energy will decrease. However, as h decreases further, we
soon reach a point where the rotation rate begins increasing
even though the energy continues to decrease. This behavior
continues until h! 0 and ~X again approaches 1 (point GÞ.
This motion will probably be familiar to most students—a

Fig. 4. A h-~‘ phase portrait for the steady-state solutions of the spinning cyl-

inder, Eq. (15), showing both stable and unstable solutions, as well as a for-

bidden region in which there are no (real) solutions.
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coin spinning rapidly on a table undergoes the exact motion
just described, ending with an impressive increase in the
rotation rate X just before coming to rest flat on the table
(essentially a miniature version of Euler’s Disk).34

Finally, it is worth noting that there is no forbidden region
for the specific aspect ratio ~‘ ¼

ffiffiffi
3
p

=2. Lying right at the
boundary between disks and cylinders, this aspect ratio con-
tains solutions (not all stable) for the entire range of angles
0 < h < p=2. Interestingly, the two curves h0 and h1 cross
at ~‘ ¼

ffiffiffi
3
p

=2, suggesting that the angle h ¼ arctanðR=‘Þ sup-
ports solutions for both ~X ¼ 0 and ~X ¼ 1. This situation is
discussed in more detail in the following section.

IV. EXPERIMENTAL RESULTS

So far, our analysis has been completely theoretical. One
of the nice aspects of this particular system is that it is rela-
tively easy to construct cylinders with different aspect ratios
and perform experiments. Unfortunately, unlike Hurricane
Balls, which lead to extremely stable and reproducible
experimental results, it is a bit more difficult to obtain exper-
imental data for spinning cylinders and disks. The main issue
is that the system is much more prone to instabilities that are
not accounted for in our theory. For example, a cylinder with
aspect ratio ~‘ ¼ 1 is quite stable when spinning extremely
fast. However, as the rotation rate ~X decreases, the center of
mass of the system will suddenly begin circling around in a
fairly predictable manner. While this motion and the under-
lying instability are quite interesting and would make a nice
extension to the analysis presented here, such motions are
beyond the scope of this study. Nevertheless, because of
such instabilities, it is important when taking experimental
data to be as careful as possible that the motion is actually
one in which the center of mass is (nearly) at rest and the
angle h is (nearly) constant.35

The easiest experimental data to obtain are when the cyl-
inders (or disks) are spinning extremely fast, as the steady-
state motion is very stable at high rotation rates. In addition,
Eq. (15) leads to the specific prediction h1 ¼ arctanðI1=I3

~‘Þ
for this situation. Using an air source and two handheld noz-
zles, it is relatively easy to drive the system to very high
rotation rates (typically � 100 Hz). A high-speed camera is
then used to capture the motion from which data are obtained
using the freely available video-analysis program Tracker.36

Figure 5 shows a sample of our results for a range of differ-
ent aspect ratios (the error bars are approximately the size of

the markers). As can be seen, these data agree with the pre-
diction quite well, though there appears to be a small system-
atic error for larger aspect ratios. This effect can be
understood by noting that smaller-aspect-ratio cylinders level
off to h1 more quickly and will therefore be better approxi-
mated by finite rotation rates (see Fig. 6).

To obtain data for different rotation rates, we would spin a
cylinder up to a high rotation rate and then make short videos
as energy is dissipated and the rotation rate decreases.
Spinning cylinders on their sides generally leads to fairly sta-
ble steady-state motions. However, as the aspect ratio gets
closer to ~‘ ¼

ffiffiffi
3
p

=2, the cylinders become susceptible to
instabilities that make it more difficult to obtain data. In
addition, cylinders can also be spun on their ends, but in this
case, they need to be spun by hand, which makes the process
more challenging (it takes practice to learn to spin a cylinder
with its center of mass essentially at rest). While the motions
for small h are quite stable, it takes a lot of patience to obtain
steady-state motions for larger h (near the band of instability
in Fig. 4).

The cylinder data are shown in Fig. 6 for aspect ratios
~‘ ¼ 2:5 (squares), 1.5 (circles), and 1.0 (triangles), along
with the predictions from Eq. (15). The solid (dashed) por-
tions of the curves represent stable (unstable) motion, as
described in the Appendix. The upper curves correspond to
cylinders spinning on their sides, and the lower curves corre-
spond to cylinders spinning on their ends. As can be seen,
the experimental data agree reasonably well with the predic-
tions in both regimes.

The procedure for obtaining spinning disk data is similar
to that for cylinders. To obtain data for disks spinning on one
face (lower left portion of Fig. 4), we spin the disks up to a
high rotation rate and then make a number of short videos as
the energy decreases. In this case, we found that it was more
difficult to obtain steady-state motions for smaller-aspect-
ratio disks. The motion was quite stable initially, but as the
rotation rate slows, the small-aspect-ratio disks would gener-
ally become unstable to oscillatory motions. After some
time, the rotation rate would begin to increase and the
motion would become more stable. To obtain data for disks
spinning on their edges, the disks were spun by hand. Again,
care and patience was necessary to obtain appropriate
steady-state motions.37 Figure 7 shows experimental data for
disks with aspect ratios ~‘ ¼ 0:75 (squares) and 0.375
(circles). Once again, we obtain reasonable agreement with

Fig. 5. Experimental results for steady-state motions of cylinders and disks

at very high rotation rates ( � 100 Hz). The curve is given by the prediction

from Eq. (15), namely, h1 ¼ arctanðI1=I3
~‘Þ.

Fig. 6. Experimental results for steady-state motions of spinning cylinders

with aspect ratios ~‘ ¼ 2:5 (squares), 1.5 (circles), and 1.0 (triangles). The

predictions are plotted using Eq. (15), showing both stable (solid) and unsta-

ble (dashed) solutions (see Appendix).
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the predictions (the fact that the “middle” points show more
discrepancy with the predictions is due to the difficulties we
had in obtaining steady-state motions for these angles).

Finally, we discuss the special case ~‘ ¼
ffiffiffi
3
p

=2, which
occurs when I1¼ I3. For this aspect ratio, Eq. (15) gives solu-
tions h ¼ arcsinð1=~X

2Þ, for h 6¼ arctanð2=
ffiffiffi
3
p
Þ. Although

there is no forbidden region for this aspect ratio, Fig. 4 shows
that there is a band of unstable (steady-state) solutions just
above the point where the curves h0 and h1 intersect. In
addition, the angle h ¼ arctanð2=

ffiffiffi
3
p
Þ occurs precisely where

h1 and h0 cross, suggesting that multiple rotation rates are
possible at this angle. At first glance, it might seem odd to
have two different rotation rates corresponding to one angle,
but given that h ¼ arctanðR=‘Þ is the balancing angle, per-
haps this is not so strange after all. In fact, with reference to
the curves in Figs. 6 and 7 (and in particular, the curves
with ~‘ !

ffiffiffi
3
p

=2 that are not shown in the figure), it would
appear that any rotation rate will correspond to a steady-state
solution at this angle. In other words, the value h
¼ arctanð2=

ffiffiffi
3
p
Þ corresponds to a set of solutions for all ~X,

with ~X < ð7=4Þ1=4
being unstable and ~X > ð7=4Þ1=4

being
stable (see Fig. 8).

It is worth mentioning that the experimental data in Fig.
8 were a bit tricky to obtain, especially near the unstable

portions of the curves. In fact, although the data fit the pre-
dictions fairly well overall, one can see that the data seem
less reliable near the point where the curves intersect. This is
due, primarily, to the motion being very unstable to
oscillatory-type behaviors in this regime.

V. CONCLUSION

A spinning cylinder represents a fascinating rigid-body
motion that can be effective at engaging students and helping
them get practice with topics such as vector analysis, principal
axes, the inertia tensor, rotation matrices, and stable versus
unstable motions. The disappearing-symbol phenomenon is a
captivating mystery that will naturally draw students in and
motivate their study. Although the general motion of a spinning
cylinder is quite complex, making a few reasonable assump-
tions and analyzing the steady-state motion renders the problem
tractable for students as early as their sophomore year.

One nice feature of this system is that while the steady-
state motion seems quite simple, there is still a tremendous
amount of interesting physics to uncover. The mystery of the
disappearing symbols, while fascinating in and of itself, is
only the beginning. Deriving the equation of motion and ana-
lyzing what it tells us are ways for students to experience
what it is like to solve a new problem for the first time. In
this sense, this problem works very well as an extended pro-
ject in which students work as independent researchers (with
an advisor) to uncover all that the system has to offer, both
theoretically and experimentally. While the stability analysis
may be a bit challenging for students to tackle on their own,
the concepts are not difficult to understand, so with appropri-
ate guidance they can make progress here as well.

Much of the material presented here has been successfully
used in a sophomore-level mathematical methods course and
also in a junior-level classical mechanics course. Portions of
this material—for example, the disappearing-symbol phenom-
enon and its resolution as a case of velocity addition—could
even be used in an introductory course. The analysis discussed
here represents an example of how a simple real-world prob-
lem can be used to captivate and motivate students taking
physics, whether at the introductory or advanced level.
Incorporating such problems into courses seems to be a sure-
fire way to create excitement and improve student learning.
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APPENDIX: STABILITY ANALYSIS

We use an energy approach to study the stability of this
system, keeping the variables completely general initially.38

The kinetic energy is then

Fig. 7. Experimental results for steady-state motions of spinning disks with

aspect ratios ~‘ ¼ 0:75 (squares) and 0.375 (circles). The predictions are plot-

ted using Eq. (15), showing both stable (solid) and unstable (dashed)

solutions.

Fig. 8. Experimental results for steady-state motions of a spinning cylinder

with the critical aspect ratio ~‘ ¼
ffiffiffi
3
p

=2. The prediction is made up of two

parts: (i) h ¼ arcsinð1=~X
2Þ, from Eq. (15), for h 6¼ arctanð

ffiffiffi
3
p

=2Þ, with sta-

ble (solid) and unstable (dashed) solutions as determined in the Appendix;

and (ii) the horizontal line h ¼ arctanð
ffiffiffi
3
p

=2Þ, with stability and instability

determined by the limiting behavior of disks and cylinders for ~‘ !
ffiffiffi
3
p

=2.
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T ¼ 1

2
I1

_/
2

sin2hþ 1

2
I2

_h
2 þ 1

2
I3

_w þ _/ cos h
� �2

; (A1)

while the potential energy is

V ¼ Mgð‘ cos hþ R sin hÞ: (A2)

Forming the Lagrangian L ¼ T � V and determining the
Lagrange equations, one finds that the variables / and w are
ignorable so that the generalized momenta p/ and pw are
constant. These generalized momenta turn out to be the com-
ponents of angular momenta along the vertical axis (Lz) and
the symmetry axis (L3), respectively. [Note that at this point,
one can use the system constraints in the h equation to arrive
at the correct equation of motion given by Eq. (15)].

We next write the energy E¼ T þ V and substitute for _/
and _w in terms of the constants Lz and L3, resulting in an
equation of the form

E hð Þ ¼ 1

2
I2

_h
2 þ Ueff hð Þ; (A3)

where UeffðhÞ is an effective potential energy for what is
now a one-dimensional problem. This equation is generally
used to demonstrate nutation in a spinning top, as h oscillates
back and forth in a potential well. For our purposes, we
assume that the energy of the system dissipates rather
quickly so that a spinning cylinder ends up at the bottom of
the well, which represents steady-state motion. As such, one
can set dUeff=dh ¼ 0 to determine the critical points for this
system. Replacing Lz and L3 and using the system constraints
will then lead to Eq. (15), which can thus be seen as an equa-
tion for the critical points of the system.

To determine whether we are dealing with energy minima
or energy maxima, we take the second derivative
d2Ueff=dh2, evaluate it at the critical points, and check to see
whether they are positive (energy minimum) or negative
(energy maximum). While the determination of the critical
points, Eq. (15), can be carried out analytically, the determi-
nation of where the second-derivative is positive or negative
must be handled numerically.
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32Although we analyzed the situation of a cylinder rolling on its side, Eq.

(15) is also valid for a cylinder rolling on its end. In this sense, we also get

the steady-state solutions to Euler’s Disk for “free.”
33Point D represents an energy maximum on the vertical line ~‘ ¼ 2:5. In fact,

there is a curve of such maxima (forming a “ridge” in the energy landscape) that

lies below and follows the boundary (dashed curve) between stable and unstable

solutions, osculating this boundary at the point where h1 and h0 intersect.
34Interestingly, while the rotation rate X!1 as h! 0, the face of the coin

will actually become stationary. This can be understood by noting that rota-

tions about the vertical axis and rotations about the symmetry axis cancel

out as h! 0. From Eq. (6), we see that _w ! � _/ while ê3 ! êz (see Fig.

2). The end result is that x [see Eq. (4)] (and L) goes to zero as h! 0.
35We did our best to make sure the experimental results were obtained

when the center of mass was at rest and h was constant, but some aspect

ratios were very susceptible to instabilities at specific rotation rates.

Thus, while our experimental data are obtained with good precision

(reasonably small error bars), it is likely that some of our spinning cyl-

inders (and disks) were not true steady-state motions (our patience was

limited).
36Tracker is an open source video-analysis and modeling program that is

freely available online at <http://physlets.org/tracker/> or on ComPADRE

at <https://www.compadre.org/osp/items/detail.cfm?ID¼7365>.
37In Fig. 7, notice that the upper (disk on its side) ~‘ ¼ 0:75 curve is almost

vertical near h ¼ p=2. In fact, the angular speeds for some disks having

aspect ratios near ~‘ ¼
ffiffiffi
3
p

=2 are predicted to first increase slightly above
~X ¼ 1 before decreasing to ~X ¼ 0.

38See, for example, J. R. Taylor, Classical Mechanics (University Science

Books, Sausalito, 2005), pp. 403–407.
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